Properties

Label 2-650-5.4-c5-0-72
Degree $2$
Conductor $650$
Sign $-0.447 + 0.894i$
Analytic cond. $104.249$
Root an. cond. $10.2102$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4i·2-s + 27.8i·3-s − 16·4-s + 111.·6-s − 240. i·7-s + 64i·8-s − 534.·9-s + 544.·11-s − 446. i·12-s − 169i·13-s − 961.·14-s + 256·16-s + 1.62e3i·17-s + 2.13e3i·18-s + 805.·19-s + ⋯
L(s)  = 1  − 0.707i·2-s + 1.78i·3-s − 0.5·4-s + 1.26·6-s − 1.85i·7-s + 0.353i·8-s − 2.20·9-s + 1.35·11-s − 0.894i·12-s − 0.277i·13-s − 1.31·14-s + 0.250·16-s + 1.36i·17-s + 1.55i·18-s + 0.512·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(650\)    =    \(2 \cdot 5^{2} \cdot 13\)
Sign: $-0.447 + 0.894i$
Analytic conductor: \(104.249\)
Root analytic conductor: \(10.2102\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{650} (599, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 650,\ (\ :5/2),\ -0.447 + 0.894i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.9263362496\)
\(L(\frac12)\) \(\approx\) \(0.9263362496\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4iT \)
5 \( 1 \)
13 \( 1 + 169iT \)
good3 \( 1 - 27.8iT - 243T^{2} \)
7 \( 1 + 240. iT - 1.68e4T^{2} \)
11 \( 1 - 544.T + 1.61e5T^{2} \)
17 \( 1 - 1.62e3iT - 1.41e6T^{2} \)
19 \( 1 - 805.T + 2.47e6T^{2} \)
23 \( 1 + 373. iT - 6.43e6T^{2} \)
29 \( 1 + 1.50e3T + 2.05e7T^{2} \)
31 \( 1 + 2.20e3T + 2.86e7T^{2} \)
37 \( 1 + 1.31e4iT - 6.93e7T^{2} \)
41 \( 1 + 1.70e4T + 1.15e8T^{2} \)
43 \( 1 - 8.93e3iT - 1.47e8T^{2} \)
47 \( 1 - 1.57e4iT - 2.29e8T^{2} \)
53 \( 1 + 4.03e4iT - 4.18e8T^{2} \)
59 \( 1 - 4.75e4T + 7.14e8T^{2} \)
61 \( 1 + 3.02e4T + 8.44e8T^{2} \)
67 \( 1 - 3.87e4iT - 1.35e9T^{2} \)
71 \( 1 + 1.05e4T + 1.80e9T^{2} \)
73 \( 1 + 1.58e3iT - 2.07e9T^{2} \)
79 \( 1 - 6.19e3T + 3.07e9T^{2} \)
83 \( 1 + 3.78e4iT - 3.93e9T^{2} \)
89 \( 1 + 4.91e4T + 5.58e9T^{2} \)
97 \( 1 + 1.56e4iT - 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.830973968996764816148190015197, −9.012597296138563702460289968973, −8.069656389216261919352617882285, −6.76966304433440673883208677645, −5.51958056086285041228189990275, −4.36831362151893778979758398702, −3.90278186515915168077896038555, −3.34943704491040442423586923119, −1.46594533857512208867919898159, −0.21259995299307858183629994526, 1.15909781236412628448793709589, 2.13167017886666208782088399736, 3.19164173649020223294758534487, 5.08289332738105736889361941602, 5.85021607951043054875512808582, 6.63239496791459946110249064037, 7.20127951100267049300909356070, 8.280629677325761355238264163164, 8.896905239909599215710969269402, 9.524956311768957242913475234189

Graph of the $Z$-function along the critical line