L(s) = 1 | − 4i·2-s + 27.8i·3-s − 16·4-s + 111.·6-s − 240. i·7-s + 64i·8-s − 534.·9-s + 544.·11-s − 446. i·12-s − 169i·13-s − 961.·14-s + 256·16-s + 1.62e3i·17-s + 2.13e3i·18-s + 805.·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 1.78i·3-s − 0.5·4-s + 1.26·6-s − 1.85i·7-s + 0.353i·8-s − 2.20·9-s + 1.35·11-s − 0.894i·12-s − 0.277i·13-s − 1.31·14-s + 0.250·16-s + 1.36i·17-s + 1.55i·18-s + 0.512·19-s + ⋯ |
Λ(s)=(=(650s/2ΓC(s)L(s)(−0.447+0.894i)Λ(6−s)
Λ(s)=(=(650s/2ΓC(s+5/2)L(s)(−0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
650
= 2⋅52⋅13
|
Sign: |
−0.447+0.894i
|
Analytic conductor: |
104.249 |
Root analytic conductor: |
10.2102 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ650(599,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 650, ( :5/2), −0.447+0.894i)
|
Particular Values
L(3) |
≈ |
0.9263362496 |
L(21) |
≈ |
0.9263362496 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+4iT |
| 5 | 1 |
| 13 | 1+169iT |
good | 3 | 1−27.8iT−243T2 |
| 7 | 1+240.iT−1.68e4T2 |
| 11 | 1−544.T+1.61e5T2 |
| 17 | 1−1.62e3iT−1.41e6T2 |
| 19 | 1−805.T+2.47e6T2 |
| 23 | 1+373.iT−6.43e6T2 |
| 29 | 1+1.50e3T+2.05e7T2 |
| 31 | 1+2.20e3T+2.86e7T2 |
| 37 | 1+1.31e4iT−6.93e7T2 |
| 41 | 1+1.70e4T+1.15e8T2 |
| 43 | 1−8.93e3iT−1.47e8T2 |
| 47 | 1−1.57e4iT−2.29e8T2 |
| 53 | 1+4.03e4iT−4.18e8T2 |
| 59 | 1−4.75e4T+7.14e8T2 |
| 61 | 1+3.02e4T+8.44e8T2 |
| 67 | 1−3.87e4iT−1.35e9T2 |
| 71 | 1+1.05e4T+1.80e9T2 |
| 73 | 1+1.58e3iT−2.07e9T2 |
| 79 | 1−6.19e3T+3.07e9T2 |
| 83 | 1+3.78e4iT−3.93e9T2 |
| 89 | 1+4.91e4T+5.58e9T2 |
| 97 | 1+1.56e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.830973968996764816148190015197, −9.012597296138563702460289968973, −8.069656389216261919352617882285, −6.76966304433440673883208677645, −5.51958056086285041228189990275, −4.36831362151893778979758398702, −3.90278186515915168077896038555, −3.34943704491040442423586923119, −1.46594533857512208867919898159, −0.21259995299307858183629994526,
1.15909781236412628448793709589, 2.13167017886666208782088399736, 3.19164173649020223294758534487, 5.08289332738105736889361941602, 5.85021607951043054875512808582, 6.63239496791459946110249064037, 7.20127951100267049300909356070, 8.280629677325761355238264163164, 8.896905239909599215710969269402, 9.524956311768957242913475234189