L(s) = 1 | − 4i·2-s + 27.8i·3-s − 16·4-s + 111.·6-s − 240. i·7-s + 64i·8-s − 534.·9-s + 544.·11-s − 446. i·12-s − 169i·13-s − 961.·14-s + 256·16-s + 1.62e3i·17-s + 2.13e3i·18-s + 805.·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 1.78i·3-s − 0.5·4-s + 1.26·6-s − 1.85i·7-s + 0.353i·8-s − 2.20·9-s + 1.35·11-s − 0.894i·12-s − 0.277i·13-s − 1.31·14-s + 0.250·16-s + 1.36i·17-s + 1.55i·18-s + 0.512·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.9263362496\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9263362496\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 4iT \) |
| 5 | \( 1 \) |
| 13 | \( 1 + 169iT \) |
good | 3 | \( 1 - 27.8iT - 243T^{2} \) |
| 7 | \( 1 + 240. iT - 1.68e4T^{2} \) |
| 11 | \( 1 - 544.T + 1.61e5T^{2} \) |
| 17 | \( 1 - 1.62e3iT - 1.41e6T^{2} \) |
| 19 | \( 1 - 805.T + 2.47e6T^{2} \) |
| 23 | \( 1 + 373. iT - 6.43e6T^{2} \) |
| 29 | \( 1 + 1.50e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + 2.20e3T + 2.86e7T^{2} \) |
| 37 | \( 1 + 1.31e4iT - 6.93e7T^{2} \) |
| 41 | \( 1 + 1.70e4T + 1.15e8T^{2} \) |
| 43 | \( 1 - 8.93e3iT - 1.47e8T^{2} \) |
| 47 | \( 1 - 1.57e4iT - 2.29e8T^{2} \) |
| 53 | \( 1 + 4.03e4iT - 4.18e8T^{2} \) |
| 59 | \( 1 - 4.75e4T + 7.14e8T^{2} \) |
| 61 | \( 1 + 3.02e4T + 8.44e8T^{2} \) |
| 67 | \( 1 - 3.87e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 + 1.05e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + 1.58e3iT - 2.07e9T^{2} \) |
| 79 | \( 1 - 6.19e3T + 3.07e9T^{2} \) |
| 83 | \( 1 + 3.78e4iT - 3.93e9T^{2} \) |
| 89 | \( 1 + 4.91e4T + 5.58e9T^{2} \) |
| 97 | \( 1 + 1.56e4iT - 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.830973968996764816148190015197, −9.012597296138563702460289968973, −8.069656389216261919352617882285, −6.76966304433440673883208677645, −5.51958056086285041228189990275, −4.36831362151893778979758398702, −3.90278186515915168077896038555, −3.34943704491040442423586923119, −1.46594533857512208867919898159, −0.21259995299307858183629994526,
1.15909781236412628448793709589, 2.13167017886666208782088399736, 3.19164173649020223294758534487, 5.08289332738105736889361941602, 5.85021607951043054875512808582, 6.63239496791459946110249064037, 7.20127951100267049300909356070, 8.280629677325761355238264163164, 8.896905239909599215710969269402, 9.524956311768957242913475234189