L(s) = 1 | − i·2-s − 0.792·3-s − 4-s + 0.792i·6-s + 3.37i·7-s + i·8-s − 2.37·9-s − 5.04i·11-s + 0.792·12-s + (3.46 − i)13-s + 3.37·14-s + 16-s + 2.67·17-s + 2.37i·18-s − 3.46i·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.457·3-s − 0.5·4-s + 0.323i·6-s + 1.27i·7-s + 0.353i·8-s − 0.790·9-s − 1.52i·11-s + 0.228·12-s + (0.960 − 0.277i)13-s + 0.901·14-s + 0.250·16-s + 0.648·17-s + 0.559i·18-s − 0.794i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.277 + 0.960i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.277 + 0.960i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.913440 - 0.687051i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.913440 - 0.687051i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (-3.46 + i)T \) |
good | 3 | \( 1 + 0.792T + 3T^{2} \) |
| 7 | \( 1 - 3.37iT - 7T^{2} \) |
| 11 | \( 1 + 5.04iT - 11T^{2} \) |
| 17 | \( 1 - 2.67T + 17T^{2} \) |
| 19 | \( 1 + 3.46iT - 19T^{2} \) |
| 23 | \( 1 - 6.63T + 23T^{2} \) |
| 29 | \( 1 - 8.74T + 29T^{2} \) |
| 31 | \( 1 + 3.46iT - 31T^{2} \) |
| 37 | \( 1 + 8.11iT - 37T^{2} \) |
| 41 | \( 1 - 3.16iT - 41T^{2} \) |
| 43 | \( 1 + 9.30T + 43T^{2} \) |
| 47 | \( 1 - 4.62iT - 47T^{2} \) |
| 53 | \( 1 + 1.58T + 53T^{2} \) |
| 59 | \( 1 + 6.63iT - 59T^{2} \) |
| 61 | \( 1 - 4.74T + 61T^{2} \) |
| 67 | \( 1 + 4iT - 67T^{2} \) |
| 71 | \( 1 + 3.96iT - 71T^{2} \) |
| 73 | \( 1 - 10iT - 73T^{2} \) |
| 79 | \( 1 - 6.74T + 79T^{2} \) |
| 83 | \( 1 + 2.74iT - 83T^{2} \) |
| 89 | \( 1 - 8.51iT - 89T^{2} \) |
| 97 | \( 1 - 4.74iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.77877583163360881606139858195, −9.438481172149036491630863196447, −8.644881395226857282511668025127, −8.253097225701378565694029719323, −6.45397155392459845474812449839, −5.71662104221182252808114854055, −5.03444993858947179740143896978, −3.35323818360863410924567438543, −2.69795523700365249967317848351, −0.818752544098216797902701403214,
1.19902176720566936079191421228, 3.31849400409358216499858310009, 4.47077912402928445243419148596, 5.24819646503983321385143085266, 6.49593682682467919443343600681, 6.99549521282887535850288881952, 8.005612091632179693357235037305, 8.825030964559869005380039175784, 10.07072919194082727455029590753, 10.45967099472044281563684282099