L(s) = 1 | + (0.866 − 0.5i)2-s + (0.547 + 0.948i)3-s + (0.499 − 0.866i)4-s + (0.948 + 0.547i)6-s + (3.45 + 1.99i)7-s − 0.999i·8-s + (0.900 − 1.56i)9-s + (0.142 − 0.0820i)11-s + 1.09·12-s + (−1.50 + 3.27i)13-s + 3.99·14-s + (−0.5 − 0.866i)16-s + (−0.783 + 1.35i)17-s − 1.80i·18-s + (−0.716 − 0.413i)19-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (0.316 + 0.547i)3-s + (0.249 − 0.433i)4-s + (0.387 + 0.223i)6-s + (1.30 + 0.754i)7-s − 0.353i·8-s + (0.300 − 0.520i)9-s + (0.0428 − 0.0247i)11-s + 0.316·12-s + (−0.418 + 0.908i)13-s + 1.06·14-s + (−0.125 − 0.216i)16-s + (−0.190 + 0.329i)17-s − 0.424i·18-s + (−0.164 − 0.0948i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.996 - 0.0791i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.996 - 0.0791i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.63896 + 0.104558i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.63896 + 0.104558i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (1.50 - 3.27i)T \) |
good | 3 | \( 1 + (-0.547 - 0.948i)T + (-1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 + (-3.45 - 1.99i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.142 + 0.0820i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (0.783 - 1.35i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.716 + 0.413i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (3.49 + 6.05i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.92 - 5.06i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 0.0858iT - 31T^{2} \) |
| 37 | \( 1 + (-7.24 + 4.18i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-7.48 + 4.32i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (5.62 - 9.74i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 5.31iT - 47T^{2} \) |
| 53 | \( 1 + 10.3T + 53T^{2} \) |
| 59 | \( 1 + (3 + 1.73i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.21 + 5.57i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (13.2 - 7.65i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (5.19 + 3i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 0.179iT - 73T^{2} \) |
| 79 | \( 1 + 6.21T + 79T^{2} \) |
| 83 | \( 1 + 1.23iT - 83T^{2} \) |
| 89 | \( 1 + (8.98 - 5.18i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (16.3 + 9.46i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.71407706528054353108211194647, −9.718498009462341264258942079576, −8.925211859849248036057885388190, −8.140074254829724453837690301641, −6.85377284327656809328783563690, −5.88737179559450044289677808889, −4.64604895377209324792638491463, −4.28375870011145302700452508357, −2.81181800927902652743995001013, −1.69123191845941668783094270131,
1.47663793573767851387330753531, 2.73613077638979320478369394227, 4.22340527173897306680181634371, 4.92249436306454599685736199559, 5.99681189718748457297686529319, 7.26646980183998176268650277572, 7.77770736054427764970417503341, 8.280369931050408686174302303089, 9.761460630119848197832504219144, 10.69535158434322352096512765680