Properties

Label 2-650-1.1-c5-0-87
Degree $2$
Conductor $650$
Sign $-1$
Analytic cond. $104.249$
Root an. cond. $10.2102$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 9.04·3-s + 16·4-s + 36.1·6-s − 77.0·7-s + 64·8-s − 161.·9-s + 463.·11-s + 144.·12-s + 169·13-s − 308.·14-s + 256·16-s − 1.86e3·17-s − 644.·18-s − 618.·19-s − 696.·21-s + 1.85e3·22-s + 1.71e3·23-s + 578.·24-s + 676·26-s − 3.65e3·27-s − 1.23e3·28-s − 5.86e3·29-s − 545.·31-s + 1.02e3·32-s + 4.18e3·33-s − 7.47e3·34-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.580·3-s + 0.5·4-s + 0.410·6-s − 0.594·7-s + 0.353·8-s − 0.663·9-s + 1.15·11-s + 0.290·12-s + 0.277·13-s − 0.420·14-s + 0.250·16-s − 1.56·17-s − 0.469·18-s − 0.392·19-s − 0.344·21-s + 0.816·22-s + 0.674·23-s + 0.205·24-s + 0.196·26-s − 0.964·27-s − 0.297·28-s − 1.29·29-s − 0.101·31-s + 0.176·32-s + 0.669·33-s − 1.10·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(650\)    =    \(2 \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(104.249\)
Root analytic conductor: \(10.2102\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 650,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4T \)
5 \( 1 \)
13 \( 1 - 169T \)
good3 \( 1 - 9.04T + 243T^{2} \)
7 \( 1 + 77.0T + 1.68e4T^{2} \)
11 \( 1 - 463.T + 1.61e5T^{2} \)
17 \( 1 + 1.86e3T + 1.41e6T^{2} \)
19 \( 1 + 618.T + 2.47e6T^{2} \)
23 \( 1 - 1.71e3T + 6.43e6T^{2} \)
29 \( 1 + 5.86e3T + 2.05e7T^{2} \)
31 \( 1 + 545.T + 2.86e7T^{2} \)
37 \( 1 - 1.23e4T + 6.93e7T^{2} \)
41 \( 1 + 1.77e4T + 1.15e8T^{2} \)
43 \( 1 + 1.26e4T + 1.47e8T^{2} \)
47 \( 1 - 1.59e4T + 2.29e8T^{2} \)
53 \( 1 - 2.79e4T + 4.18e8T^{2} \)
59 \( 1 + 2.22e4T + 7.14e8T^{2} \)
61 \( 1 - 5.54e3T + 8.44e8T^{2} \)
67 \( 1 + 5.96e4T + 1.35e9T^{2} \)
71 \( 1 + 6.72e4T + 1.80e9T^{2} \)
73 \( 1 + 6.73e4T + 2.07e9T^{2} \)
79 \( 1 + 4.90e4T + 3.07e9T^{2} \)
83 \( 1 + 1.25e4T + 3.93e9T^{2} \)
89 \( 1 + 1.36e3T + 5.58e9T^{2} \)
97 \( 1 + 5.80e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.044082908047256219290780469585, −8.768262404362406948643589173127, −7.40729381465700965619635706651, −6.53373015010517048251222108015, −5.84359426597826565784655723177, −4.51453078887353720969381314104, −3.66171562468831210332161180985, −2.76672718956266314142823568825, −1.67494515581758385735366203790, 0, 1.67494515581758385735366203790, 2.76672718956266314142823568825, 3.66171562468831210332161180985, 4.51453078887353720969381314104, 5.84359426597826565784655723177, 6.53373015010517048251222108015, 7.40729381465700965619635706651, 8.768262404362406948643589173127, 9.044082908047256219290780469585

Graph of the $Z$-function along the critical line