Properties

Label 2-650-1.1-c5-0-38
Degree $2$
Conductor $650$
Sign $1$
Analytic cond. $104.249$
Root an. cond. $10.2102$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 3.71·3-s + 16·4-s + 14.8·6-s + 10.2·7-s + 64·8-s − 229.·9-s + 197.·11-s + 59.4·12-s − 169·13-s + 41.0·14-s + 256·16-s + 949.·17-s − 916.·18-s + 2.23e3·19-s + 38.1·21-s + 789.·22-s + 367.·23-s + 237.·24-s − 676·26-s − 1.75e3·27-s + 164.·28-s − 6.60e3·29-s − 9.91e3·31-s + 1.02e3·32-s + 733.·33-s + 3.79e3·34-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.238·3-s + 0.5·4-s + 0.168·6-s + 0.0791·7-s + 0.353·8-s − 0.943·9-s + 0.491·11-s + 0.119·12-s − 0.277·13-s + 0.0559·14-s + 0.250·16-s + 0.797·17-s − 0.666·18-s + 1.41·19-s + 0.0188·21-s + 0.347·22-s + 0.145·23-s + 0.0843·24-s − 0.196·26-s − 0.463·27-s + 0.0395·28-s − 1.45·29-s − 1.85·31-s + 0.176·32-s + 0.117·33-s + 0.563·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(650\)    =    \(2 \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(104.249\)
Root analytic conductor: \(10.2102\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 650,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.923989326\)
\(L(\frac12)\) \(\approx\) \(3.923989326\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4T \)
5 \( 1 \)
13 \( 1 + 169T \)
good3 \( 1 - 3.71T + 243T^{2} \)
7 \( 1 - 10.2T + 1.68e4T^{2} \)
11 \( 1 - 197.T + 1.61e5T^{2} \)
17 \( 1 - 949.T + 1.41e6T^{2} \)
19 \( 1 - 2.23e3T + 2.47e6T^{2} \)
23 \( 1 - 367.T + 6.43e6T^{2} \)
29 \( 1 + 6.60e3T + 2.05e7T^{2} \)
31 \( 1 + 9.91e3T + 2.86e7T^{2} \)
37 \( 1 - 9.39e3T + 6.93e7T^{2} \)
41 \( 1 - 2.05e4T + 1.15e8T^{2} \)
43 \( 1 - 1.63e4T + 1.47e8T^{2} \)
47 \( 1 - 1.35e4T + 2.29e8T^{2} \)
53 \( 1 - 3.50e4T + 4.18e8T^{2} \)
59 \( 1 + 6.17e3T + 7.14e8T^{2} \)
61 \( 1 - 1.37e4T + 8.44e8T^{2} \)
67 \( 1 - 6.21e4T + 1.35e9T^{2} \)
71 \( 1 + 3.83e4T + 1.80e9T^{2} \)
73 \( 1 + 5.99e4T + 2.07e9T^{2} \)
79 \( 1 - 8.96e4T + 3.07e9T^{2} \)
83 \( 1 - 3.81e4T + 3.93e9T^{2} \)
89 \( 1 + 7.82e4T + 5.58e9T^{2} \)
97 \( 1 + 8.05e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.622694648177122393025529204647, −9.065973635785819657636362463888, −7.76159839654417269503164052501, −7.25715286287775521038886666802, −5.80399389139785005565484171032, −5.47222337540423347793952400417, −4.07525763361489831936597206476, −3.24190532139064035248684307828, −2.22063973322207767431042394291, −0.846448305910342452938626606605, 0.846448305910342452938626606605, 2.22063973322207767431042394291, 3.24190532139064035248684307828, 4.07525763361489831936597206476, 5.47222337540423347793952400417, 5.80399389139785005565484171032, 7.25715286287775521038886666802, 7.76159839654417269503164052501, 9.065973635785819657636362463888, 9.622694648177122393025529204647

Graph of the $Z$-function along the critical line