Properties

Label 2-650-1.1-c1-0-8
Degree $2$
Conductor $650$
Sign $-1$
Analytic cond. $5.19027$
Root an. cond. $2.27821$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3·3-s + 4-s + 3·6-s − 8-s + 6·9-s − 3·11-s − 3·12-s − 13-s + 16-s + 7·17-s − 6·18-s + 19-s + 3·22-s + 4·23-s + 3·24-s + 26-s − 9·27-s + 4·29-s − 10·31-s − 32-s + 9·33-s − 7·34-s + 6·36-s − 12·37-s − 38-s + 3·39-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.73·3-s + 1/2·4-s + 1.22·6-s − 0.353·8-s + 2·9-s − 0.904·11-s − 0.866·12-s − 0.277·13-s + 1/4·16-s + 1.69·17-s − 1.41·18-s + 0.229·19-s + 0.639·22-s + 0.834·23-s + 0.612·24-s + 0.196·26-s − 1.73·27-s + 0.742·29-s − 1.79·31-s − 0.176·32-s + 1.56·33-s − 1.20·34-s + 36-s − 1.97·37-s − 0.162·38-s + 0.480·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(650\)    =    \(2 \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(5.19027\)
Root analytic conductor: \(2.27821\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 650,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
13 \( 1 + T \)
good3 \( 1 + p T + p T^{2} \) 1.3.d
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 3 T + p T^{2} \) 1.11.d
17 \( 1 - 7 T + p T^{2} \) 1.17.ah
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 12 T + p T^{2} \) 1.37.m
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 15 T + p T^{2} \) 1.83.p
89 \( 1 + 11 T + p T^{2} \) 1.89.l
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.29093861191328574217466979755, −9.603959225458467302531545897476, −8.268540524730647623814161484282, −7.31089777196365830410947449224, −6.63368203908700163385624516161, −5.39555888414531273146053427777, −5.14414638880116353876067872683, −3.34911684951110812302712106923, −1.46739177433700954810449600662, 0, 1.46739177433700954810449600662, 3.34911684951110812302712106923, 5.14414638880116353876067872683, 5.39555888414531273146053427777, 6.63368203908700163385624516161, 7.31089777196365830410947449224, 8.268540524730647623814161484282, 9.603959225458467302531545897476, 10.29093861191328574217466979755

Graph of the $Z$-function along the critical line