Properties

Label 2-65-65.49-c1-0-1
Degree $2$
Conductor $65$
Sign $0.895 + 0.444i$
Analytic cond. $0.519027$
Root an. cond. $0.720435$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.228 − 0.395i)2-s + (−0.866 + 0.5i)3-s + (0.895 − 1.55i)4-s + (2.18 + 0.456i)5-s + (0.395 + 0.228i)6-s + (0.866 − 1.5i)7-s − 1.73·8-s + (−1 + 1.73i)9-s + (−0.319 − 0.970i)10-s + (−2.29 + 1.32i)11-s + 1.79i·12-s + (−3.46 + i)13-s − 0.791·14-s + (−2.12 + 0.698i)15-s + (−1.39 − 2.41i)16-s + (3.96 + 2.29i)17-s + ⋯
L(s)  = 1  + (−0.161 − 0.279i)2-s + (−0.499 + 0.288i)3-s + (0.447 − 0.775i)4-s + (0.978 + 0.204i)5-s + (0.161 + 0.0932i)6-s + (0.327 − 0.566i)7-s − 0.612·8-s + (−0.333 + 0.577i)9-s + (−0.100 − 0.306i)10-s + (−0.690 + 0.398i)11-s + 0.517i·12-s + (−0.960 + 0.277i)13-s − 0.211·14-s + (−0.548 + 0.180i)15-s + (−0.348 − 0.604i)16-s + (0.962 + 0.555i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 65 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.895 + 0.444i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 65 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.895 + 0.444i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(65\)    =    \(5 \cdot 13\)
Sign: $0.895 + 0.444i$
Analytic conductor: \(0.519027\)
Root analytic conductor: \(0.720435\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{65} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 65,\ (\ :1/2),\ 0.895 + 0.444i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.826184 - 0.193945i\)
\(L(\frac12)\) \(\approx\) \(0.826184 - 0.193945i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-2.18 - 0.456i)T \)
13 \( 1 + (3.46 - i)T \)
good2 \( 1 + (0.228 + 0.395i)T + (-1 + 1.73i)T^{2} \)
3 \( 1 + (0.866 - 0.5i)T + (1.5 - 2.59i)T^{2} \)
7 \( 1 + (-0.866 + 1.5i)T + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (2.29 - 1.32i)T + (5.5 - 9.52i)T^{2} \)
17 \( 1 + (-3.96 - 2.29i)T + (8.5 + 14.7i)T^{2} \)
19 \( 1 + (1.5 + 0.866i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (3.96 - 2.29i)T + (11.5 - 19.9i)T^{2} \)
29 \( 1 + (-2.29 - 3.96i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 + 6.20iT - 31T^{2} \)
37 \( 1 + (3.96 + 6.87i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (-2.29 + 1.32i)T + (20.5 - 35.5i)T^{2} \)
43 \( 1 + (-9.16 - 5.29i)T + (21.5 + 37.2i)T^{2} \)
47 \( 1 + 1.82T + 47T^{2} \)
53 \( 1 + 7.58iT - 53T^{2} \)
59 \( 1 + (12.0 + 6.97i)T + (29.5 + 51.0i)T^{2} \)
61 \( 1 + (-0.708 + 1.22i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-0.504 - 0.873i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + (-6.08 - 3.51i)T + (35.5 + 61.4i)T^{2} \)
73 \( 1 + 73T^{2} \)
79 \( 1 - 6T + 79T^{2} \)
83 \( 1 - 6.01T + 83T^{2} \)
89 \( 1 + (-8.29 + 4.78i)T + (44.5 - 77.0i)T^{2} \)
97 \( 1 + (-5.70 + 9.87i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.63585377966136100124005588017, −13.98233370935528704454391585536, −12.47675690648557051738466946161, −11.06326207813602762078210028112, −10.38062410762900683023618625008, −9.588076353283201091120387637768, −7.57355229296938211174650041154, −6.02045540426939672321457339109, −5.02036978095841196206089201887, −2.19809918440530383914969316923, 2.71184241147790884934468388573, 5.37045689866446928364770460358, 6.41429547456782242924466642019, 7.86497378911316177475538725302, 9.060735280943552566615311634674, 10.47381266725883982644422718256, 12.05466663240329074341459267750, 12.39557749092135279014793686982, 13.87482349473606592847938302402, 15.07538406314450356441436232835

Graph of the $Z$-function along the critical line