L(s) = 1 | + i·2-s + (1 − i)3-s + 4-s + (−2 − i)5-s + (1 + i)6-s − 2·7-s + 3i·8-s + i·9-s + (1 − 2i)10-s + (−1 + i)11-s + (1 − i)12-s + (−2 − 3i)13-s − 2i·14-s + (−3 + i)15-s − 16-s + (−1 + i)17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + (0.577 − 0.577i)3-s + 0.5·4-s + (−0.894 − 0.447i)5-s + (0.408 + 0.408i)6-s − 0.755·7-s + 1.06i·8-s + 0.333i·9-s + (0.316 − 0.632i)10-s + (−0.301 + 0.301i)11-s + (0.288 − 0.288i)12-s + (−0.554 − 0.832i)13-s − 0.534i·14-s + (−0.774 + 0.258i)15-s − 0.250·16-s + (−0.242 + 0.242i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 65 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.927 - 0.374i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 65 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.927 - 0.374i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.979091 + 0.190293i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.979091 + 0.190293i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (2 + i)T \) |
| 13 | \( 1 + (2 + 3i)T \) |
good | 2 | \( 1 - iT - 2T^{2} \) |
| 3 | \( 1 + (-1 + i)T - 3iT^{2} \) |
| 7 | \( 1 + 2T + 7T^{2} \) |
| 11 | \( 1 + (1 - i)T - 11iT^{2} \) |
| 17 | \( 1 + (1 - i)T - 17iT^{2} \) |
| 19 | \( 1 + (-5 + 5i)T - 19iT^{2} \) |
| 23 | \( 1 + (3 + 3i)T + 23iT^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 + (-5 - 5i)T + 31iT^{2} \) |
| 37 | \( 1 + 37T^{2} \) |
| 41 | \( 1 + (7 + 7i)T + 41iT^{2} \) |
| 43 | \( 1 + (-1 - i)T + 43iT^{2} \) |
| 47 | \( 1 - 6T + 47T^{2} \) |
| 53 | \( 1 + (-5 + 5i)T - 53iT^{2} \) |
| 59 | \( 1 + (-7 - 7i)T + 59iT^{2} \) |
| 61 | \( 1 + 14T + 61T^{2} \) |
| 67 | \( 1 + 4iT - 67T^{2} \) |
| 71 | \( 1 + (-1 - i)T + 71iT^{2} \) |
| 73 | \( 1 - 10iT - 73T^{2} \) |
| 79 | \( 1 + 2iT - 79T^{2} \) |
| 83 | \( 1 - 6T + 83T^{2} \) |
| 89 | \( 1 + (5 + 5i)T + 89iT^{2} \) |
| 97 | \( 1 - 2iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.28579776964001605097298587298, −13.95532139868130104566786074623, −12.83582081536284619655210794362, −11.87807583563561442245591663179, −10.44727603384268724981891056381, −8.672039690771289654349266605249, −7.69350949572141222845109232994, −6.91714408521196356372826667724, −5.13100718728728937839185291943, −2.82409610158548274010114456850,
2.96181350563692654476995942473, 3.93587120510712779749531006049, 6.47283955809375816477191327139, 7.75886313353359764562170939638, 9.463473378377305064427803714975, 10.22778443578192177665180726873, 11.62223127762783070483086381618, 12.19842745299681660905524811285, 13.78404864990385496336077884859, 15.01761079605975656508322141111