L(s) = 1 | − i·2-s + (1 + i)3-s + 4-s + (−2 + i)5-s + (1 − i)6-s − 2·7-s − 3i·8-s − i·9-s + (1 + 2i)10-s + (−1 − i)11-s + (1 + i)12-s + (−2 + 3i)13-s + 2i·14-s + (−3 − i)15-s − 16-s + (−1 − i)17-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + (0.577 + 0.577i)3-s + 0.5·4-s + (−0.894 + 0.447i)5-s + (0.408 − 0.408i)6-s − 0.755·7-s − 1.06i·8-s − 0.333i·9-s + (0.316 + 0.632i)10-s + (−0.301 − 0.301i)11-s + (0.288 + 0.288i)12-s + (−0.554 + 0.832i)13-s + 0.534i·14-s + (−0.774 − 0.258i)15-s − 0.250·16-s + (−0.242 − 0.242i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 65 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.927 + 0.374i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 65 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.927 + 0.374i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.979091 - 0.190293i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.979091 - 0.190293i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (2 - i)T \) |
| 13 | \( 1 + (2 - 3i)T \) |
good | 2 | \( 1 + iT - 2T^{2} \) |
| 3 | \( 1 + (-1 - i)T + 3iT^{2} \) |
| 7 | \( 1 + 2T + 7T^{2} \) |
| 11 | \( 1 + (1 + i)T + 11iT^{2} \) |
| 17 | \( 1 + (1 + i)T + 17iT^{2} \) |
| 19 | \( 1 + (-5 - 5i)T + 19iT^{2} \) |
| 23 | \( 1 + (3 - 3i)T - 23iT^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 + (-5 + 5i)T - 31iT^{2} \) |
| 37 | \( 1 + 37T^{2} \) |
| 41 | \( 1 + (7 - 7i)T - 41iT^{2} \) |
| 43 | \( 1 + (-1 + i)T - 43iT^{2} \) |
| 47 | \( 1 - 6T + 47T^{2} \) |
| 53 | \( 1 + (-5 - 5i)T + 53iT^{2} \) |
| 59 | \( 1 + (-7 + 7i)T - 59iT^{2} \) |
| 61 | \( 1 + 14T + 61T^{2} \) |
| 67 | \( 1 - 4iT - 67T^{2} \) |
| 71 | \( 1 + (-1 + i)T - 71iT^{2} \) |
| 73 | \( 1 + 10iT - 73T^{2} \) |
| 79 | \( 1 - 2iT - 79T^{2} \) |
| 83 | \( 1 - 6T + 83T^{2} \) |
| 89 | \( 1 + (5 - 5i)T - 89iT^{2} \) |
| 97 | \( 1 + 2iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.01761079605975656508322141111, −13.78404864990385496336077884859, −12.19842745299681660905524811285, −11.62223127762783070483086381618, −10.22778443578192177665180726873, −9.463473378377305064427803714975, −7.75886313353359764562170939638, −6.47283955809375816477191327139, −3.93587120510712779749531006049, −2.96181350563692654476995942473,
2.82409610158548274010114456850, 5.13100718728728937839185291943, 6.91714408521196356372826667724, 7.69350949572141222845109232994, 8.672039690771289654349266605249, 10.44727603384268724981891056381, 11.87807583563561442245591663179, 12.83582081536284619655210794362, 13.95532139868130104566786074623, 15.28579776964001605097298587298