L(s) = 1 | + (1.15 + 1.99i)2-s + (−0.5 − 0.866i)3-s + (−1.65 + 2.86i)4-s − 5-s + (1.15 − 1.99i)6-s + (0.5 − 0.866i)7-s − 2.99·8-s + (1 − 1.73i)9-s + (−1.15 − 1.99i)10-s + (−0.802 − 1.39i)11-s + 3.30·12-s − 3.60·13-s + 2.30·14-s + (0.5 + 0.866i)15-s + (−0.151 − 0.262i)16-s + (−3.80 + 6.58i)17-s + ⋯ |
L(s) = 1 | + (0.814 + 1.41i)2-s + (−0.288 − 0.499i)3-s + (−0.825 + 1.43i)4-s − 0.447·5-s + (0.470 − 0.814i)6-s + (0.188 − 0.327i)7-s − 1.06·8-s + (0.333 − 0.577i)9-s + (−0.364 − 0.630i)10-s + (−0.242 − 0.419i)11-s + 0.953·12-s − 1.00·13-s + 0.615·14-s + (0.129 + 0.223i)15-s + (−0.0378 − 0.0655i)16-s + (−0.922 + 1.59i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 65 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.252 - 0.967i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 65 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.252 - 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.882867 + 0.681955i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.882867 + 0.681955i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + T \) |
| 13 | \( 1 + 3.60T \) |
good | 2 | \( 1 + (-1.15 - 1.99i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (0.5 + 0.866i)T + (-1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 + (-0.5 + 0.866i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (0.802 + 1.39i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (3.80 - 6.58i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.80 + 4.85i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.5 - 2.59i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.10 - 5.37i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 4T + 31T^{2} \) |
| 37 | \( 1 + (1.80 + 3.12i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (1.5 + 2.59i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-5.10 + 8.84i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 9.21T + 47T^{2} \) |
| 53 | \( 1 + 3.21T + 53T^{2} \) |
| 59 | \( 1 + (-5.40 + 9.36i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.5 + 0.866i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.5 - 6.06i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (2.40 - 4.17i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 0.788T + 73T^{2} \) |
| 79 | \( 1 - 5.21T + 79T^{2} \) |
| 83 | \( 1 + 9.21T + 83T^{2} \) |
| 89 | \( 1 + (-3.10 - 5.37i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-4.19 + 7.26i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.23240186713145171807298469486, −14.20033562151667667600496360444, −13.09063773268110204174052223411, −12.33172832529868215671343923018, −10.83936797101497974980434560023, −8.850316335612125910152289476152, −7.46498094166597590559225299668, −6.78905538776817669651575731269, −5.39734069479177377929684220852, −3.97776970866971482582701838201,
2.52759809345947439612794892322, 4.36800531468517690847863369810, 5.18213621752467731457333050423, 7.52540775289160939623334917265, 9.520704082235653297044018337427, 10.42582258176282826104586338613, 11.50564070308548827203924012796, 12.19986809291769919145899052411, 13.34204889724484478064714586755, 14.40805439940454396411539272746