Properties

Label 2-65-1.1-c5-0-15
Degree $2$
Conductor $65$
Sign $1$
Analytic cond. $10.4249$
Root an. cond. $3.22876$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9.61·2-s + 28.9·3-s + 60.4·4-s − 25·5-s + 278.·6-s − 189.·7-s + 273.·8-s + 596.·9-s − 240.·10-s − 566.·11-s + 1.75e3·12-s + 169·13-s − 1.82e3·14-s − 724.·15-s + 698.·16-s − 686.·17-s + 5.73e3·18-s + 125.·19-s − 1.51e3·20-s − 5.50e3·21-s − 5.45e3·22-s + 3.48e3·23-s + 7.93e3·24-s + 625·25-s + 1.62e3·26-s + 1.02e4·27-s − 1.14e4·28-s + ⋯
L(s)  = 1  + 1.70·2-s + 1.85·3-s + 1.89·4-s − 0.447·5-s + 3.16·6-s − 1.46·7-s + 1.51·8-s + 2.45·9-s − 0.760·10-s − 1.41·11-s + 3.51·12-s + 0.277·13-s − 2.49·14-s − 0.831·15-s + 0.682·16-s − 0.576·17-s + 4.17·18-s + 0.0799·19-s − 0.845·20-s − 2.72·21-s − 2.40·22-s + 1.37·23-s + 2.81·24-s + 0.200·25-s + 0.471·26-s + 2.70·27-s − 2.76·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 65 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 65 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(65\)    =    \(5 \cdot 13\)
Sign: $1$
Analytic conductor: \(10.4249\)
Root analytic conductor: \(3.22876\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 65,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(6.122525079\)
\(L(\frac12)\) \(\approx\) \(6.122525079\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
13 \( 1 - 169T \)
good2 \( 1 - 9.61T + 32T^{2} \)
3 \( 1 - 28.9T + 243T^{2} \)
7 \( 1 + 189.T + 1.68e4T^{2} \)
11 \( 1 + 566.T + 1.61e5T^{2} \)
17 \( 1 + 686.T + 1.41e6T^{2} \)
19 \( 1 - 125.T + 2.47e6T^{2} \)
23 \( 1 - 3.48e3T + 6.43e6T^{2} \)
29 \( 1 - 1.90e3T + 2.05e7T^{2} \)
31 \( 1 - 6.57e3T + 2.86e7T^{2} \)
37 \( 1 - 6.92e3T + 6.93e7T^{2} \)
41 \( 1 + 1.11e3T + 1.15e8T^{2} \)
43 \( 1 + 3.46e3T + 1.47e8T^{2} \)
47 \( 1 - 7.74e3T + 2.29e8T^{2} \)
53 \( 1 + 1.51e4T + 4.18e8T^{2} \)
59 \( 1 + 4.84e4T + 7.14e8T^{2} \)
61 \( 1 + 1.40e4T + 8.44e8T^{2} \)
67 \( 1 + 3.30e4T + 1.35e9T^{2} \)
71 \( 1 - 2.10e4T + 1.80e9T^{2} \)
73 \( 1 + 8.34e4T + 2.07e9T^{2} \)
79 \( 1 - 7.48e4T + 3.07e9T^{2} \)
83 \( 1 - 5.18e4T + 3.93e9T^{2} \)
89 \( 1 - 1.22e5T + 5.58e9T^{2} \)
97 \( 1 - 1.93e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.54342443405488051942266457269, −13.28307325529107633744530898325, −12.42439402243904708233274919269, −10.54866254812943793415526374721, −9.157346877239899324079010772461, −7.71964684036142276163564233258, −6.55139543087632280872520071166, −4.57601602086525222392157661926, −3.24015045185397993896592956832, −2.70551452962236041353648295606, 2.70551452962236041353648295606, 3.24015045185397993896592956832, 4.57601602086525222392157661926, 6.55139543087632280872520071166, 7.71964684036142276163564233258, 9.157346877239899324079010772461, 10.54866254812943793415526374721, 12.42439402243904708233274919269, 13.28307325529107633744530898325, 13.54342443405488051942266457269

Graph of the $Z$-function along the critical line