Properties

Label 2-65-1.1-c5-0-11
Degree $2$
Conductor $65$
Sign $1$
Analytic cond. $10.4249$
Root an. cond. $3.22876$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.51·2-s + 11.2·3-s + 40.5·4-s − 25·5-s + 95.6·6-s + 229.·7-s + 72.5·8-s − 116.·9-s − 212.·10-s + 502.·11-s + 455.·12-s + 169·13-s + 1.95e3·14-s − 280.·15-s − 678.·16-s − 453.·17-s − 995.·18-s − 1.89e3·19-s − 1.01e3·20-s + 2.57e3·21-s + 4.28e3·22-s − 1.31e3·23-s + 814.·24-s + 625·25-s + 1.43e3·26-s − 4.04e3·27-s + 9.30e3·28-s + ⋯
L(s)  = 1  + 1.50·2-s + 0.720·3-s + 1.26·4-s − 0.447·5-s + 1.08·6-s + 1.77·7-s + 0.400·8-s − 0.481·9-s − 0.673·10-s + 1.25·11-s + 0.912·12-s + 0.277·13-s + 2.66·14-s − 0.322·15-s − 0.662·16-s − 0.380·17-s − 0.724·18-s − 1.20·19-s − 0.566·20-s + 1.27·21-s + 1.88·22-s − 0.517·23-s + 0.288·24-s + 0.200·25-s + 0.417·26-s − 1.06·27-s + 2.24·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 65 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 65 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(65\)    =    \(5 \cdot 13\)
Sign: $1$
Analytic conductor: \(10.4249\)
Root analytic conductor: \(3.22876\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 65,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(4.759297806\)
\(L(\frac12)\) \(\approx\) \(4.759297806\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
13 \( 1 - 169T \)
good2 \( 1 - 8.51T + 32T^{2} \)
3 \( 1 - 11.2T + 243T^{2} \)
7 \( 1 - 229.T + 1.68e4T^{2} \)
11 \( 1 - 502.T + 1.61e5T^{2} \)
17 \( 1 + 453.T + 1.41e6T^{2} \)
19 \( 1 + 1.89e3T + 2.47e6T^{2} \)
23 \( 1 + 1.31e3T + 6.43e6T^{2} \)
29 \( 1 + 4.57e3T + 2.05e7T^{2} \)
31 \( 1 - 3.20e3T + 2.86e7T^{2} \)
37 \( 1 - 7.68e3T + 6.93e7T^{2} \)
41 \( 1 - 1.62e4T + 1.15e8T^{2} \)
43 \( 1 + 1.56e4T + 1.47e8T^{2} \)
47 \( 1 + 2.47e4T + 2.29e8T^{2} \)
53 \( 1 + 1.90e4T + 4.18e8T^{2} \)
59 \( 1 - 2.41e4T + 7.14e8T^{2} \)
61 \( 1 + 2.27e4T + 8.44e8T^{2} \)
67 \( 1 - 6.56e4T + 1.35e9T^{2} \)
71 \( 1 + 2.44e4T + 1.80e9T^{2} \)
73 \( 1 + 1.75e4T + 2.07e9T^{2} \)
79 \( 1 - 5.36e4T + 3.07e9T^{2} \)
83 \( 1 - 2.77e4T + 3.93e9T^{2} \)
89 \( 1 - 3.54e4T + 5.58e9T^{2} \)
97 \( 1 - 5.84e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.27109288531381704751757820394, −13.03035839962444804336159727547, −11.63881436215678257225890576256, −11.25294440910647467145800069206, −8.922387800430152063532830502682, −7.941878476588159831681208925002, −6.25316346749667806010363266921, −4.71899630250145764116388999436, −3.77361088440411179797917789331, −2.04451279006606430019326417420, 2.04451279006606430019326417420, 3.77361088440411179797917789331, 4.71899630250145764116388999436, 6.25316346749667806010363266921, 7.941878476588159831681208925002, 8.922387800430152063532830502682, 11.25294440910647467145800069206, 11.63881436215678257225890576256, 13.03035839962444804336159727547, 14.27109288531381704751757820394

Graph of the $Z$-function along the critical line