Properties

Label 2-6480-1.1-c1-0-94
Degree $2$
Conductor $6480$
Sign $-1$
Analytic cond. $51.7430$
Root an. cond. $7.19326$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 3.27·7-s + 6.27·11-s − 1.27·13-s − 2·17-s − 19-s − 7.27·23-s + 25-s − 6.27·29-s − 6.27·31-s − 3.27·35-s − 10.5·37-s − 7.54·41-s − 4·43-s − 1.27·47-s + 3.72·49-s − 0.725·53-s − 6.27·55-s − 13·59-s + 8.54·61-s + 1.27·65-s − 0.549·67-s − 8.27·71-s + 15.0·73-s + 20.5·77-s − 10.5·79-s − 2.54·83-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.23·7-s + 1.89·11-s − 0.353·13-s − 0.485·17-s − 0.229·19-s − 1.51·23-s + 0.200·25-s − 1.16·29-s − 1.12·31-s − 0.553·35-s − 1.73·37-s − 1.17·41-s − 0.609·43-s − 0.185·47-s + 0.532·49-s − 0.0995·53-s − 0.846·55-s − 1.69·59-s + 1.09·61-s + 0.158·65-s − 0.0671·67-s − 0.982·71-s + 1.76·73-s + 2.34·77-s − 1.18·79-s − 0.279·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6480\)    =    \(2^{4} \cdot 3^{4} \cdot 5\)
Sign: $-1$
Analytic conductor: \(51.7430\)
Root analytic conductor: \(7.19326\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6480,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
good7 \( 1 - 3.27T + 7T^{2} \)
11 \( 1 - 6.27T + 11T^{2} \)
13 \( 1 + 1.27T + 13T^{2} \)
17 \( 1 + 2T + 17T^{2} \)
19 \( 1 + T + 19T^{2} \)
23 \( 1 + 7.27T + 23T^{2} \)
29 \( 1 + 6.27T + 29T^{2} \)
31 \( 1 + 6.27T + 31T^{2} \)
37 \( 1 + 10.5T + 37T^{2} \)
41 \( 1 + 7.54T + 41T^{2} \)
43 \( 1 + 4T + 43T^{2} \)
47 \( 1 + 1.27T + 47T^{2} \)
53 \( 1 + 0.725T + 53T^{2} \)
59 \( 1 + 13T + 59T^{2} \)
61 \( 1 - 8.54T + 61T^{2} \)
67 \( 1 + 0.549T + 67T^{2} \)
71 \( 1 + 8.27T + 71T^{2} \)
73 \( 1 - 15.0T + 73T^{2} \)
79 \( 1 + 10.5T + 79T^{2} \)
83 \( 1 + 2.54T + 83T^{2} \)
89 \( 1 + 12.8T + 89T^{2} \)
97 \( 1 - 16T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.63648193930740373867045325444, −7.02622982415089490577114519858, −6.34459203935677027531652839907, −5.46205575217073485525597760758, −4.69385241076572364459532301059, −3.99134488736222242159192807722, −3.47446982358748978578412285007, −1.91306684777512295504685932627, −1.59356776087878332385941049702, 0, 1.59356776087878332385941049702, 1.91306684777512295504685932627, 3.47446982358748978578412285007, 3.99134488736222242159192807722, 4.69385241076572364459532301059, 5.46205575217073485525597760758, 6.34459203935677027531652839907, 7.02622982415089490577114519858, 7.63648193930740373867045325444

Graph of the $Z$-function along the critical line