Properties

Label 2-6480-1.1-c1-0-9
Degree $2$
Conductor $6480$
Sign $1$
Analytic cond. $51.7430$
Root an. cond. $7.19326$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 2·7-s − 3·11-s − 4·13-s + 6·17-s + 7·19-s − 6·23-s + 25-s + 3·29-s − 5·31-s + 2·35-s − 4·37-s + 3·41-s − 8·43-s − 3·49-s − 6·53-s + 3·55-s + 3·59-s + 14·61-s + 4·65-s − 2·67-s − 15·71-s − 10·73-s + 6·77-s − 8·79-s − 6·85-s + 15·89-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.755·7-s − 0.904·11-s − 1.10·13-s + 1.45·17-s + 1.60·19-s − 1.25·23-s + 1/5·25-s + 0.557·29-s − 0.898·31-s + 0.338·35-s − 0.657·37-s + 0.468·41-s − 1.21·43-s − 3/7·49-s − 0.824·53-s + 0.404·55-s + 0.390·59-s + 1.79·61-s + 0.496·65-s − 0.244·67-s − 1.78·71-s − 1.17·73-s + 0.683·77-s − 0.900·79-s − 0.650·85-s + 1.58·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6480\)    =    \(2^{4} \cdot 3^{4} \cdot 5\)
Sign: $1$
Analytic conductor: \(51.7430\)
Root analytic conductor: \(7.19326\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6480,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.052723894\)
\(L(\frac12)\) \(\approx\) \(1.052723894\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \)
11 \( 1 + 3 T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 - 7 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 + 5 T + p T^{2} \)
37 \( 1 + 4 T + p T^{2} \)
41 \( 1 - 3 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 - 3 T + p T^{2} \)
61 \( 1 - 14 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 + 15 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 - 15 T + p T^{2} \)
97 \( 1 - 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.71515267559231621180275759619, −7.55302729234928352011760899956, −6.73388638987573702096945998408, −5.70192815048877508836762538801, −5.30213654286461281096510880663, −4.43510075725671110612271554750, −3.30894136367383503968392879457, −3.06828578155467449935474458244, −1.86115879579351728980789285347, −0.51327688814545283864117880909, 0.51327688814545283864117880909, 1.86115879579351728980789285347, 3.06828578155467449935474458244, 3.30894136367383503968392879457, 4.43510075725671110612271554750, 5.30213654286461281096510880663, 5.70192815048877508836762538801, 6.73388638987573702096945998408, 7.55302729234928352011760899956, 7.71515267559231621180275759619

Graph of the $Z$-function along the critical line