L(s) = 1 | + 5-s + 7-s − 4·13-s − 6·17-s − 2·19-s + 3·23-s + 25-s + 3·29-s + 10·31-s + 35-s − 10·37-s + 9·41-s + 4·43-s − 9·47-s − 6·49-s − 6·53-s + 6·59-s − 61-s − 4·65-s − 11·67-s − 12·71-s − 4·73-s + 10·79-s + 9·83-s − 6·85-s + 9·89-s − 4·91-s + ⋯ |
L(s) = 1 | + 0.447·5-s + 0.377·7-s − 1.10·13-s − 1.45·17-s − 0.458·19-s + 0.625·23-s + 1/5·25-s + 0.557·29-s + 1.79·31-s + 0.169·35-s − 1.64·37-s + 1.40·41-s + 0.609·43-s − 1.31·47-s − 6/7·49-s − 0.824·53-s + 0.781·59-s − 0.128·61-s − 0.496·65-s − 1.34·67-s − 1.42·71-s − 0.468·73-s + 1.12·79-s + 0.987·83-s − 0.650·85-s + 0.953·89-s − 0.419·91-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 - T \) |
good | 7 | \( 1 - T + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 13 | \( 1 + 4 T + p T^{2} \) |
| 17 | \( 1 + 6 T + p T^{2} \) |
| 19 | \( 1 + 2 T + p T^{2} \) |
| 23 | \( 1 - 3 T + p T^{2} \) |
| 29 | \( 1 - 3 T + p T^{2} \) |
| 31 | \( 1 - 10 T + p T^{2} \) |
| 37 | \( 1 + 10 T + p T^{2} \) |
| 41 | \( 1 - 9 T + p T^{2} \) |
| 43 | \( 1 - 4 T + p T^{2} \) |
| 47 | \( 1 + 9 T + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 - 6 T + p T^{2} \) |
| 61 | \( 1 + T + p T^{2} \) |
| 67 | \( 1 + 11 T + p T^{2} \) |
| 71 | \( 1 + 12 T + p T^{2} \) |
| 73 | \( 1 + 4 T + p T^{2} \) |
| 79 | \( 1 - 10 T + p T^{2} \) |
| 83 | \( 1 - 9 T + p T^{2} \) |
| 89 | \( 1 - 9 T + p T^{2} \) |
| 97 | \( 1 + 10 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.73069944735315744693332426297, −6.72040570156018381746807670265, −6.52001844705914147790978929145, −5.41776523950565909875459640480, −4.73829503522721052468726323842, −4.27002176610569020540612514687, −2.94954119474310782026483342931, −2.36730083827778928821109686902, −1.40196150361961862470022665096, 0,
1.40196150361961862470022665096, 2.36730083827778928821109686902, 2.94954119474310782026483342931, 4.27002176610569020540612514687, 4.73829503522721052468726323842, 5.41776523950565909875459640480, 6.52001844705914147790978929145, 6.72040570156018381746807670265, 7.73069944735315744693332426297