L(s) = 1 | + 5-s − 0.562·7-s − 6.36·11-s + 3.75·13-s + 6.65·17-s + 3.33·19-s − 4.16·23-s + 25-s − 9.82·29-s − 5.16·31-s − 0.562·35-s + 3.14·37-s − 11.5·41-s − 8.60·43-s + 12.2·47-s − 6.68·49-s − 0.434·53-s − 6.36·55-s + 1.73·59-s + 4.92·61-s + 3.75·65-s + 11.6·67-s − 11.7·71-s + 4.31·73-s + 3.58·77-s − 7.46·79-s + 8.99·83-s + ⋯ |
L(s) = 1 | + 0.447·5-s − 0.212·7-s − 1.91·11-s + 1.04·13-s + 1.61·17-s + 0.765·19-s − 0.869·23-s + 0.200·25-s − 1.82·29-s − 0.928·31-s − 0.0951·35-s + 0.516·37-s − 1.80·41-s − 1.31·43-s + 1.79·47-s − 0.954·49-s − 0.0597·53-s − 0.858·55-s + 0.225·59-s + 0.630·61-s + 0.465·65-s + 1.42·67-s − 1.39·71-s + 0.505·73-s + 0.408·77-s − 0.839·79-s + 0.987·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 - T \) |
good | 7 | \( 1 + 0.562T + 7T^{2} \) |
| 11 | \( 1 + 6.36T + 11T^{2} \) |
| 13 | \( 1 - 3.75T + 13T^{2} \) |
| 17 | \( 1 - 6.65T + 17T^{2} \) |
| 19 | \( 1 - 3.33T + 19T^{2} \) |
| 23 | \( 1 + 4.16T + 23T^{2} \) |
| 29 | \( 1 + 9.82T + 29T^{2} \) |
| 31 | \( 1 + 5.16T + 31T^{2} \) |
| 37 | \( 1 - 3.14T + 37T^{2} \) |
| 41 | \( 1 + 11.5T + 41T^{2} \) |
| 43 | \( 1 + 8.60T + 43T^{2} \) |
| 47 | \( 1 - 12.2T + 47T^{2} \) |
| 53 | \( 1 + 0.434T + 53T^{2} \) |
| 59 | \( 1 - 1.73T + 59T^{2} \) |
| 61 | \( 1 - 4.92T + 61T^{2} \) |
| 67 | \( 1 - 11.6T + 67T^{2} \) |
| 71 | \( 1 + 11.7T + 71T^{2} \) |
| 73 | \( 1 - 4.31T + 73T^{2} \) |
| 79 | \( 1 + 7.46T + 79T^{2} \) |
| 83 | \( 1 - 8.99T + 83T^{2} \) |
| 89 | \( 1 - 6.36T + 89T^{2} \) |
| 97 | \( 1 + 16.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.76583813291341803654904830831, −7.07852772130208044455043849136, −6.04375876223917170312876983222, −5.44978277006977802115247554048, −5.16637573268202200775598186736, −3.75655709666117738456816164020, −3.28179441814298675613681438978, −2.29730759574997686860877237100, −1.36729317802085522659371928118, 0,
1.36729317802085522659371928118, 2.29730759574997686860877237100, 3.28179441814298675613681438978, 3.75655709666117738456816164020, 5.16637573268202200775598186736, 5.44978277006977802115247554048, 6.04375876223917170312876983222, 7.07852772130208044455043849136, 7.76583813291341803654904830831