Properties

Label 2-6480-1.1-c1-0-76
Degree $2$
Conductor $6480$
Sign $-1$
Analytic cond. $51.7430$
Root an. cond. $7.19326$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 3.73·7-s + 5.46·11-s + 1.46·13-s − 7.46·17-s + 2·19-s + 0.267·23-s + 25-s − 8.46·29-s + 2·31-s − 3.73·35-s − 10.3·37-s + 3.92·41-s + 11.4·43-s + 3.73·47-s + 6.92·49-s − 6·53-s + 5.46·55-s − 6.39·59-s − 1.53·61-s + 1.46·65-s − 9.73·67-s + 2.53·71-s − 6.92·73-s − 20.3·77-s − 8.53·79-s − 2.80·83-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.41·7-s + 1.64·11-s + 0.406·13-s − 1.81·17-s + 0.458·19-s + 0.0558·23-s + 0.200·25-s − 1.57·29-s + 0.359·31-s − 0.630·35-s − 1.70·37-s + 0.613·41-s + 1.74·43-s + 0.544·47-s + 0.989·49-s − 0.824·53-s + 0.736·55-s − 0.832·59-s − 0.196·61-s + 0.181·65-s − 1.18·67-s + 0.300·71-s − 0.810·73-s − 2.32·77-s − 0.960·79-s − 0.307·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6480\)    =    \(2^{4} \cdot 3^{4} \cdot 5\)
Sign: $-1$
Analytic conductor: \(51.7430\)
Root analytic conductor: \(7.19326\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6480,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 + 3.73T + 7T^{2} \)
11 \( 1 - 5.46T + 11T^{2} \)
13 \( 1 - 1.46T + 13T^{2} \)
17 \( 1 + 7.46T + 17T^{2} \)
19 \( 1 - 2T + 19T^{2} \)
23 \( 1 - 0.267T + 23T^{2} \)
29 \( 1 + 8.46T + 29T^{2} \)
31 \( 1 - 2T + 31T^{2} \)
37 \( 1 + 10.3T + 37T^{2} \)
41 \( 1 - 3.92T + 41T^{2} \)
43 \( 1 - 11.4T + 43T^{2} \)
47 \( 1 - 3.73T + 47T^{2} \)
53 \( 1 + 6T + 53T^{2} \)
59 \( 1 + 6.39T + 59T^{2} \)
61 \( 1 + 1.53T + 61T^{2} \)
67 \( 1 + 9.73T + 67T^{2} \)
71 \( 1 - 2.53T + 71T^{2} \)
73 \( 1 + 6.92T + 73T^{2} \)
79 \( 1 + 8.53T + 79T^{2} \)
83 \( 1 + 2.80T + 83T^{2} \)
89 \( 1 + 3.92T + 89T^{2} \)
97 \( 1 - 4.92T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.35540061893367213706621863239, −6.93243661603426553001860792585, −6.11600546646132684633593309793, −5.95468938784116343163096009056, −4.65107677838850356625072135231, −3.91554265887523293236633708871, −3.29761567811302235412314330432, −2.29465623888969538217371935551, −1.33616080835037379873265127108, 0, 1.33616080835037379873265127108, 2.29465623888969538217371935551, 3.29761567811302235412314330432, 3.91554265887523293236633708871, 4.65107677838850356625072135231, 5.95468938784116343163096009056, 6.11600546646132684633593309793, 6.93243661603426553001860792585, 7.35540061893367213706621863239

Graph of the $Z$-function along the critical line