Properties

Label 2-6480-1.1-c1-0-73
Degree $2$
Conductor $6480$
Sign $-1$
Analytic cond. $51.7430$
Root an. cond. $7.19326$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 1.44·7-s − 2·17-s − 2.89·19-s + 2.55·23-s + 25-s + 7.89·29-s − 10.8·31-s − 1.44·35-s − 6·37-s − 0.101·41-s + 7.79·43-s + 4.55·47-s − 4.89·49-s − 11.7·53-s + 10.8·59-s − 3·61-s − 11.2·67-s + 9.79·71-s − 5.79·73-s − 2.89·79-s + 0.550·83-s + 2·85-s − 16.7·89-s + 2.89·95-s + 2·97-s − 2·101-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.547·7-s − 0.485·17-s − 0.665·19-s + 0.531·23-s + 0.200·25-s + 1.46·29-s − 1.95·31-s − 0.245·35-s − 0.986·37-s − 0.0157·41-s + 1.18·43-s + 0.663·47-s − 0.699·49-s − 1.62·53-s + 1.41·59-s − 0.384·61-s − 1.37·67-s + 1.16·71-s − 0.678·73-s − 0.326·79-s + 0.0604·83-s + 0.216·85-s − 1.78·89-s + 0.297·95-s + 0.203·97-s − 0.199·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6480\)    =    \(2^{4} \cdot 3^{4} \cdot 5\)
Sign: $-1$
Analytic conductor: \(51.7430\)
Root analytic conductor: \(7.19326\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6480,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
good7 \( 1 - 1.44T + 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 + 13T^{2} \)
17 \( 1 + 2T + 17T^{2} \)
19 \( 1 + 2.89T + 19T^{2} \)
23 \( 1 - 2.55T + 23T^{2} \)
29 \( 1 - 7.89T + 29T^{2} \)
31 \( 1 + 10.8T + 31T^{2} \)
37 \( 1 + 6T + 37T^{2} \)
41 \( 1 + 0.101T + 41T^{2} \)
43 \( 1 - 7.79T + 43T^{2} \)
47 \( 1 - 4.55T + 47T^{2} \)
53 \( 1 + 11.7T + 53T^{2} \)
59 \( 1 - 10.8T + 59T^{2} \)
61 \( 1 + 3T + 61T^{2} \)
67 \( 1 + 11.2T + 67T^{2} \)
71 \( 1 - 9.79T + 71T^{2} \)
73 \( 1 + 5.79T + 73T^{2} \)
79 \( 1 + 2.89T + 79T^{2} \)
83 \( 1 - 0.550T + 83T^{2} \)
89 \( 1 + 16.7T + 89T^{2} \)
97 \( 1 - 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.61259979343361470049431124958, −7.05670769903213810545746249503, −6.32061538772238072790485298279, −5.45191405024685199131736079253, −4.72597201617999733469843463947, −4.09740363913011287335324522534, −3.22156468883634681010563923872, −2.28369580479480489476430218731, −1.32234569409703140399230656624, 0, 1.32234569409703140399230656624, 2.28369580479480489476430218731, 3.22156468883634681010563923872, 4.09740363913011287335324522534, 4.72597201617999733469843463947, 5.45191405024685199131736079253, 6.32061538772238072790485298279, 7.05670769903213810545746249503, 7.61259979343361470049431124958

Graph of the $Z$-function along the critical line