Properties

Label 2-6480-1.1-c1-0-71
Degree $2$
Conductor $6480$
Sign $-1$
Analytic cond. $51.7430$
Root an. cond. $7.19326$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 0.267·7-s + 3.46·11-s + 0.267·13-s + 3.46·17-s − 5.92·19-s − 6.46·23-s + 25-s − 6.92·29-s + 1.46·31-s + 0.267·35-s + 8·37-s + 5.19·41-s − 5.46·43-s + 0.464·47-s − 6.92·49-s + 5.53·53-s − 3.46·55-s − 8.66·59-s + 12.3·61-s − 0.267·65-s − 8·67-s − 6·71-s − 14.3·73-s − 0.928·77-s + 14.3·79-s − 15.4·83-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.101·7-s + 1.04·11-s + 0.0743·13-s + 0.840·17-s − 1.36·19-s − 1.34·23-s + 0.200·25-s − 1.28·29-s + 0.262·31-s + 0.0452·35-s + 1.31·37-s + 0.811·41-s − 0.833·43-s + 0.0676·47-s − 0.989·49-s + 0.760·53-s − 0.467·55-s − 1.12·59-s + 1.58·61-s − 0.0332·65-s − 0.977·67-s − 0.712·71-s − 1.68·73-s − 0.105·77-s + 1.61·79-s − 1.69·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6480\)    =    \(2^{4} \cdot 3^{4} \cdot 5\)
Sign: $-1$
Analytic conductor: \(51.7430\)
Root analytic conductor: \(7.19326\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6480,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
good7 \( 1 + 0.267T + 7T^{2} \)
11 \( 1 - 3.46T + 11T^{2} \)
13 \( 1 - 0.267T + 13T^{2} \)
17 \( 1 - 3.46T + 17T^{2} \)
19 \( 1 + 5.92T + 19T^{2} \)
23 \( 1 + 6.46T + 23T^{2} \)
29 \( 1 + 6.92T + 29T^{2} \)
31 \( 1 - 1.46T + 31T^{2} \)
37 \( 1 - 8T + 37T^{2} \)
41 \( 1 - 5.19T + 41T^{2} \)
43 \( 1 + 5.46T + 43T^{2} \)
47 \( 1 - 0.464T + 47T^{2} \)
53 \( 1 - 5.53T + 53T^{2} \)
59 \( 1 + 8.66T + 59T^{2} \)
61 \( 1 - 12.3T + 61T^{2} \)
67 \( 1 + 8T + 67T^{2} \)
71 \( 1 + 6T + 71T^{2} \)
73 \( 1 + 14.3T + 73T^{2} \)
79 \( 1 - 14.3T + 79T^{2} \)
83 \( 1 + 15.4T + 83T^{2} \)
89 \( 1 + 12T + 89T^{2} \)
97 \( 1 - 14.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.71810333061451085893512157931, −6.98059223543795911990356818495, −6.16728226391366709686906823708, −5.76054738947840369072481673886, −4.54370854891663647125170780665, −4.04996190762744387724929850104, −3.34547665307806716578386542406, −2.25246841442449057464270743737, −1.30969081082511740076352043481, 0, 1.30969081082511740076352043481, 2.25246841442449057464270743737, 3.34547665307806716578386542406, 4.04996190762744387724929850104, 4.54370854891663647125170780665, 5.76054738947840369072481673886, 6.16728226391366709686906823708, 6.98059223543795911990356818495, 7.71810333061451085893512157931

Graph of the $Z$-function along the critical line