Properties

Label 2-6480-1.1-c1-0-7
Degree $2$
Conductor $6480$
Sign $1$
Analytic cond. $51.7430$
Root an. cond. $7.19326$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 3.03·7-s − 5.27·11-s − 0.513·13-s + 2.80·17-s − 8.29·19-s − 5.03·23-s + 25-s − 4.78·29-s + 8.58·31-s − 3.03·35-s − 6.58·37-s + 7.98·41-s + 1.19·43-s + 9.62·47-s + 2.22·49-s − 0.467·53-s − 5.27·55-s + 0.757·59-s − 0.271·61-s − 0.513·65-s + 7.26·67-s − 1.48·71-s + 5.31·73-s + 16.0·77-s + 15.9·79-s − 12.0·83-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.14·7-s − 1.58·11-s − 0.142·13-s + 0.679·17-s − 1.90·19-s − 1.05·23-s + 0.200·25-s − 0.888·29-s + 1.54·31-s − 0.513·35-s − 1.08·37-s + 1.24·41-s + 0.182·43-s + 1.40·47-s + 0.317·49-s − 0.0642·53-s − 0.710·55-s + 0.0985·59-s − 0.0347·61-s − 0.0637·65-s + 0.887·67-s − 0.176·71-s + 0.622·73-s + 1.82·77-s + 1.79·79-s − 1.32·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6480\)    =    \(2^{4} \cdot 3^{4} \cdot 5\)
Sign: $1$
Analytic conductor: \(51.7430\)
Root analytic conductor: \(7.19326\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6480,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.025670107\)
\(L(\frac12)\) \(\approx\) \(1.025670107\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 + 3.03T + 7T^{2} \)
11 \( 1 + 5.27T + 11T^{2} \)
13 \( 1 + 0.513T + 13T^{2} \)
17 \( 1 - 2.80T + 17T^{2} \)
19 \( 1 + 8.29T + 19T^{2} \)
23 \( 1 + 5.03T + 23T^{2} \)
29 \( 1 + 4.78T + 29T^{2} \)
31 \( 1 - 8.58T + 31T^{2} \)
37 \( 1 + 6.58T + 37T^{2} \)
41 \( 1 - 7.98T + 41T^{2} \)
43 \( 1 - 1.19T + 43T^{2} \)
47 \( 1 - 9.62T + 47T^{2} \)
53 \( 1 + 0.467T + 53T^{2} \)
59 \( 1 - 0.757T + 59T^{2} \)
61 \( 1 + 0.271T + 61T^{2} \)
67 \( 1 - 7.26T + 67T^{2} \)
71 \( 1 + 1.48T + 71T^{2} \)
73 \( 1 - 5.31T + 73T^{2} \)
79 \( 1 - 15.9T + 79T^{2} \)
83 \( 1 + 12.0T + 83T^{2} \)
89 \( 1 - 15.2T + 89T^{2} \)
97 \( 1 + 6.36T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.021482132583163011864089826935, −7.33700277114591428513542666760, −6.44742526129524158683036536015, −5.97814247553088364390317751231, −5.29728476669164893721153059566, −4.38460558315350216167745181507, −3.55197066434517151432097471000, −2.61771070816209598691420058924, −2.11166606127574900519902338700, −0.48845638341821851160548601542, 0.48845638341821851160548601542, 2.11166606127574900519902338700, 2.61771070816209598691420058924, 3.55197066434517151432097471000, 4.38460558315350216167745181507, 5.29728476669164893721153059566, 5.97814247553088364390317751231, 6.44742526129524158683036536015, 7.33700277114591428513542666760, 8.021482132583163011864089826935

Graph of the $Z$-function along the critical line