L(s) = 1 | − 5-s − 0.267·7-s + 1.46·11-s − 5.46·13-s + 0.535·17-s + 2·19-s − 3.73·23-s + 25-s + 1.53·29-s + 2·31-s + 0.267·35-s + 10.3·37-s + 9.92·41-s + 4.53·43-s − 0.267·47-s − 6.92·49-s + 6·53-s − 1.46·55-s − 14.3·59-s − 8.46·61-s + 5.46·65-s − 6.26·67-s − 9.46·71-s + 6.92·73-s − 0.392·77-s − 15.4·79-s + 13.1·83-s + ⋯ |
L(s) = 1 | − 0.447·5-s − 0.101·7-s + 0.441·11-s − 1.51·13-s + 0.129·17-s + 0.458·19-s − 0.778·23-s + 0.200·25-s + 0.285·29-s + 0.359·31-s + 0.0452·35-s + 1.70·37-s + 1.55·41-s + 0.691·43-s − 0.0390·47-s − 0.989·49-s + 0.824·53-s − 0.197·55-s − 1.87·59-s − 1.08·61-s + 0.677·65-s − 0.765·67-s − 1.12·71-s + 0.810·73-s − 0.0447·77-s − 1.73·79-s + 1.44·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + T \) |
good | 7 | \( 1 + 0.267T + 7T^{2} \) |
| 11 | \( 1 - 1.46T + 11T^{2} \) |
| 13 | \( 1 + 5.46T + 13T^{2} \) |
| 17 | \( 1 - 0.535T + 17T^{2} \) |
| 19 | \( 1 - 2T + 19T^{2} \) |
| 23 | \( 1 + 3.73T + 23T^{2} \) |
| 29 | \( 1 - 1.53T + 29T^{2} \) |
| 31 | \( 1 - 2T + 31T^{2} \) |
| 37 | \( 1 - 10.3T + 37T^{2} \) |
| 41 | \( 1 - 9.92T + 41T^{2} \) |
| 43 | \( 1 - 4.53T + 43T^{2} \) |
| 47 | \( 1 + 0.267T + 47T^{2} \) |
| 53 | \( 1 - 6T + 53T^{2} \) |
| 59 | \( 1 + 14.3T + 59T^{2} \) |
| 61 | \( 1 + 8.46T + 61T^{2} \) |
| 67 | \( 1 + 6.26T + 67T^{2} \) |
| 71 | \( 1 + 9.46T + 71T^{2} \) |
| 73 | \( 1 - 6.92T + 73T^{2} \) |
| 79 | \( 1 + 15.4T + 79T^{2} \) |
| 83 | \( 1 - 13.1T + 83T^{2} \) |
| 89 | \( 1 + 9.92T + 89T^{2} \) |
| 97 | \( 1 + 8.92T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.70499235356185049090524137752, −7.08980046868728208480659429880, −6.23719803527863831631338257389, −5.59256184134279425860514787242, −4.55059922427790729891127204867, −4.23960367172535799504270483431, −3.07065888313650283815987494874, −2.46208992163732046267157731898, −1.22767605720874635217944860433, 0,
1.22767605720874635217944860433, 2.46208992163732046267157731898, 3.07065888313650283815987494874, 4.23960367172535799504270483431, 4.55059922427790729891127204867, 5.59256184134279425860514787242, 6.23719803527863831631338257389, 7.08980046868728208480659429880, 7.70499235356185049090524137752