L(s) = 1 | + 5-s − 5·7-s − 13-s + 6·17-s − 5·19-s + 9·23-s + 25-s + 4·31-s − 5·35-s − 10·37-s − 3·41-s − 8·43-s + 3·47-s + 18·49-s + 3·53-s − 9·59-s + 8·61-s − 65-s + 4·67-s − 6·71-s + 2·73-s − 2·79-s − 6·83-s + 6·85-s + 6·89-s + 5·91-s − 5·95-s + ⋯ |
L(s) = 1 | + 0.447·5-s − 1.88·7-s − 0.277·13-s + 1.45·17-s − 1.14·19-s + 1.87·23-s + 1/5·25-s + 0.718·31-s − 0.845·35-s − 1.64·37-s − 0.468·41-s − 1.21·43-s + 0.437·47-s + 18/7·49-s + 0.412·53-s − 1.17·59-s + 1.02·61-s − 0.124·65-s + 0.488·67-s − 0.712·71-s + 0.234·73-s − 0.225·79-s − 0.658·83-s + 0.650·85-s + 0.635·89-s + 0.524·91-s − 0.512·95-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 - T \) |
good | 7 | \( 1 + 5 T + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 13 | \( 1 + T + p T^{2} \) |
| 17 | \( 1 - 6 T + p T^{2} \) |
| 19 | \( 1 + 5 T + p T^{2} \) |
| 23 | \( 1 - 9 T + p T^{2} \) |
| 29 | \( 1 + p T^{2} \) |
| 31 | \( 1 - 4 T + p T^{2} \) |
| 37 | \( 1 + 10 T + p T^{2} \) |
| 41 | \( 1 + 3 T + p T^{2} \) |
| 43 | \( 1 + 8 T + p T^{2} \) |
| 47 | \( 1 - 3 T + p T^{2} \) |
| 53 | \( 1 - 3 T + p T^{2} \) |
| 59 | \( 1 + 9 T + p T^{2} \) |
| 61 | \( 1 - 8 T + p T^{2} \) |
| 67 | \( 1 - 4 T + p T^{2} \) |
| 71 | \( 1 + 6 T + p T^{2} \) |
| 73 | \( 1 - 2 T + p T^{2} \) |
| 79 | \( 1 + 2 T + p T^{2} \) |
| 83 | \( 1 + 6 T + p T^{2} \) |
| 89 | \( 1 - 6 T + p T^{2} \) |
| 97 | \( 1 + 16 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.48496643280306946515895328553, −6.77799169158187409440023176089, −6.42694746091315340337893650818, −5.56703119548803580630279503225, −4.94809854700643378200579230413, −3.76528075232163674445786318143, −3.18167667958344315281505189663, −2.51724712903277987365501288292, −1.21637819604670411224173450425, 0,
1.21637819604670411224173450425, 2.51724712903277987365501288292, 3.18167667958344315281505189663, 3.76528075232163674445786318143, 4.94809854700643378200579230413, 5.56703119548803580630279503225, 6.42694746091315340337893650818, 6.77799169158187409440023176089, 7.48496643280306946515895328553