L(s) = 1 | − 5-s − 3.37·7-s + 2.37·11-s − 3.37·13-s + 6.74·17-s − 19-s + 5.37·23-s + 25-s − 2.37·29-s − 11.1·31-s + 3.37·35-s + 6·37-s − 0.255·41-s + 4.74·43-s − 9.37·47-s + 4.37·49-s − 10.1·53-s − 2.37·55-s + 5·59-s + 12.7·61-s + 3.37·65-s + 0.744·67-s − 4.37·71-s + 14.7·73-s − 8·77-s + 2.74·79-s − 10·83-s + ⋯ |
L(s) = 1 | − 0.447·5-s − 1.27·7-s + 0.715·11-s − 0.935·13-s + 1.63·17-s − 0.229·19-s + 1.12·23-s + 0.200·25-s − 0.440·29-s − 1.99·31-s + 0.570·35-s + 0.986·37-s − 0.0398·41-s + 0.723·43-s − 1.36·47-s + 0.624·49-s − 1.38·53-s − 0.319·55-s + 0.650·59-s + 1.63·61-s + 0.418·65-s + 0.0909·67-s − 0.518·71-s + 1.72·73-s − 0.911·77-s + 0.308·79-s − 1.09·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + T \) |
good | 7 | \( 1 + 3.37T + 7T^{2} \) |
| 11 | \( 1 - 2.37T + 11T^{2} \) |
| 13 | \( 1 + 3.37T + 13T^{2} \) |
| 17 | \( 1 - 6.74T + 17T^{2} \) |
| 19 | \( 1 + T + 19T^{2} \) |
| 23 | \( 1 - 5.37T + 23T^{2} \) |
| 29 | \( 1 + 2.37T + 29T^{2} \) |
| 31 | \( 1 + 11.1T + 31T^{2} \) |
| 37 | \( 1 - 6T + 37T^{2} \) |
| 41 | \( 1 + 0.255T + 41T^{2} \) |
| 43 | \( 1 - 4.74T + 43T^{2} \) |
| 47 | \( 1 + 9.37T + 47T^{2} \) |
| 53 | \( 1 + 10.1T + 53T^{2} \) |
| 59 | \( 1 - 5T + 59T^{2} \) |
| 61 | \( 1 - 12.7T + 61T^{2} \) |
| 67 | \( 1 - 0.744T + 67T^{2} \) |
| 71 | \( 1 + 4.37T + 71T^{2} \) |
| 73 | \( 1 - 14.7T + 73T^{2} \) |
| 79 | \( 1 - 2.74T + 79T^{2} \) |
| 83 | \( 1 + 10T + 83T^{2} \) |
| 89 | \( 1 - 4.37T + 89T^{2} \) |
| 97 | \( 1 + 4.74T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.50898527330744420624393846697, −7.04519982983922336884590464379, −6.32775347861085791542154207149, −5.54650581109369900733334901687, −4.83843424307612515696610206885, −3.70925907377571546642092449445, −3.40378584062483038159521330067, −2.44796049774225103585717184209, −1.16154507981986099226853740702, 0,
1.16154507981986099226853740702, 2.44796049774225103585717184209, 3.40378584062483038159521330067, 3.70925907377571546642092449445, 4.83843424307612515696610206885, 5.54650581109369900733334901687, 6.32775347861085791542154207149, 7.04519982983922336884590464379, 7.50898527330744420624393846697