Properties

Label 2-6480-1.1-c1-0-51
Degree $2$
Conductor $6480$
Sign $1$
Analytic cond. $51.7430$
Root an. cond. $7.19326$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 5.24·7-s − 2.67·11-s + 3.81·13-s + 3.52·17-s + 4.67·19-s + 4.95·23-s + 25-s − 1.85·29-s + 8.67·31-s + 5.24·35-s − 2.67·37-s − 3.67·41-s − 3.52·43-s − 9.26·47-s + 20.5·49-s − 2.85·53-s − 2.67·55-s − 4.20·59-s − 7.96·61-s + 3.81·65-s + 0.859·67-s + 15.1·71-s + 6.28·73-s − 14.0·77-s − 5.63·79-s + 3.89·83-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.98·7-s − 0.805·11-s + 1.05·13-s + 0.855·17-s + 1.07·19-s + 1.03·23-s + 0.200·25-s − 0.344·29-s + 1.55·31-s + 0.886·35-s − 0.439·37-s − 0.573·41-s − 0.538·43-s − 1.35·47-s + 2.92·49-s − 0.392·53-s − 0.360·55-s − 0.547·59-s − 1.01·61-s + 0.473·65-s + 0.105·67-s + 1.79·71-s + 0.735·73-s − 1.59·77-s − 0.633·79-s + 0.427·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6480\)    =    \(2^{4} \cdot 3^{4} \cdot 5\)
Sign: $1$
Analytic conductor: \(51.7430\)
Root analytic conductor: \(7.19326\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6480,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.338656454\)
\(L(\frac12)\) \(\approx\) \(3.338656454\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 - 5.24T + 7T^{2} \)
11 \( 1 + 2.67T + 11T^{2} \)
13 \( 1 - 3.81T + 13T^{2} \)
17 \( 1 - 3.52T + 17T^{2} \)
19 \( 1 - 4.67T + 19T^{2} \)
23 \( 1 - 4.95T + 23T^{2} \)
29 \( 1 + 1.85T + 29T^{2} \)
31 \( 1 - 8.67T + 31T^{2} \)
37 \( 1 + 2.67T + 37T^{2} \)
41 \( 1 + 3.67T + 41T^{2} \)
43 \( 1 + 3.52T + 43T^{2} \)
47 \( 1 + 9.26T + 47T^{2} \)
53 \( 1 + 2.85T + 53T^{2} \)
59 \( 1 + 4.20T + 59T^{2} \)
61 \( 1 + 7.96T + 61T^{2} \)
67 \( 1 - 0.859T + 67T^{2} \)
71 \( 1 - 15.1T + 71T^{2} \)
73 \( 1 - 6.28T + 73T^{2} \)
79 \( 1 + 5.63T + 79T^{2} \)
83 \( 1 - 3.89T + 83T^{2} \)
89 \( 1 + 11T + 89T^{2} \)
97 \( 1 + 3.83T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.155104714365061342491543648196, −7.48858703631824405262098731607, −6.62863916383555750764127922650, −5.66825751247638829937286973505, −5.12583897504809257764574604882, −4.69876454046187624165510210481, −3.54956488901264806253917341557, −2.71814308362277607916711297546, −1.61231915838136089027346665338, −1.09130790352822194774105716877, 1.09130790352822194774105716877, 1.61231915838136089027346665338, 2.71814308362277607916711297546, 3.54956488901264806253917341557, 4.69876454046187624165510210481, 5.12583897504809257764574604882, 5.66825751247638829937286973505, 6.62863916383555750764127922650, 7.48858703631824405262098731607, 8.155104714365061342491543648196

Graph of the $Z$-function along the critical line