Properties

Label 2-6480-1.1-c1-0-48
Degree $2$
Conductor $6480$
Sign $1$
Analytic cond. $51.7430$
Root an. cond. $7.19326$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 7-s + 6·11-s + 2·13-s + 4·19-s + 9·23-s + 25-s − 3·29-s + 4·31-s + 35-s + 8·37-s + 3·41-s − 8·43-s − 3·47-s − 6·49-s − 6·53-s + 6·55-s + 6·59-s − 13·61-s + 2·65-s + 13·67-s − 6·71-s − 4·73-s + 6·77-s + 10·79-s − 9·83-s − 9·89-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.377·7-s + 1.80·11-s + 0.554·13-s + 0.917·19-s + 1.87·23-s + 1/5·25-s − 0.557·29-s + 0.718·31-s + 0.169·35-s + 1.31·37-s + 0.468·41-s − 1.21·43-s − 0.437·47-s − 6/7·49-s − 0.824·53-s + 0.809·55-s + 0.781·59-s − 1.66·61-s + 0.248·65-s + 1.58·67-s − 0.712·71-s − 0.468·73-s + 0.683·77-s + 1.12·79-s − 0.987·83-s − 0.953·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6480\)    =    \(2^{4} \cdot 3^{4} \cdot 5\)
Sign: $1$
Analytic conductor: \(51.7430\)
Root analytic conductor: \(7.19326\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6480,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.109995706\)
\(L(\frac12)\) \(\approx\) \(3.109995706\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 - T + p T^{2} \)
11 \( 1 - 6 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 - 9 T + p T^{2} \)
29 \( 1 + 3 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 - 3 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 + 3 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 + 13 T + p T^{2} \)
67 \( 1 - 13 T + p T^{2} \)
71 \( 1 + 6 T + p T^{2} \)
73 \( 1 + 4 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 + 9 T + p T^{2} \)
89 \( 1 + 9 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.094441013633697164904296060915, −7.16987750958405593706086339273, −6.60178256262327875796890769260, −6.00241662996362181901419988914, −5.12527704701765855134543949312, −4.45049154688339943623164827018, −3.57034236623571612011571855945, −2.84852147358821991378367734431, −1.55340894367064703071797939365, −1.06146439917456403229786028604, 1.06146439917456403229786028604, 1.55340894367064703071797939365, 2.84852147358821991378367734431, 3.57034236623571612011571855945, 4.45049154688339943623164827018, 5.12527704701765855134543949312, 6.00241662996362181901419988914, 6.60178256262327875796890769260, 7.16987750958405593706086339273, 8.094441013633697164904296060915

Graph of the $Z$-function along the critical line