Properties

Label 2-6480-1.1-c1-0-42
Degree $2$
Conductor $6480$
Sign $1$
Analytic cond. $51.7430$
Root an. cond. $7.19326$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 5·11-s + 4·13-s + 4·17-s + 5·19-s + 6·23-s + 25-s + 5·29-s + 9·31-s − 10·37-s − 7·41-s + 2·43-s + 2·47-s − 7·49-s − 8·53-s − 5·55-s − 59-s − 2·61-s − 4·65-s − 6·67-s + 71-s − 8·73-s − 12·79-s + 6·83-s − 4·85-s + 9·89-s − 5·95-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.50·11-s + 1.10·13-s + 0.970·17-s + 1.14·19-s + 1.25·23-s + 1/5·25-s + 0.928·29-s + 1.61·31-s − 1.64·37-s − 1.09·41-s + 0.304·43-s + 0.291·47-s − 49-s − 1.09·53-s − 0.674·55-s − 0.130·59-s − 0.256·61-s − 0.496·65-s − 0.733·67-s + 0.118·71-s − 0.936·73-s − 1.35·79-s + 0.658·83-s − 0.433·85-s + 0.953·89-s − 0.512·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6480\)    =    \(2^{4} \cdot 3^{4} \cdot 5\)
Sign: $1$
Analytic conductor: \(51.7430\)
Root analytic conductor: \(7.19326\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6480,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.561587646\)
\(L(\frac12)\) \(\approx\) \(2.561587646\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 - 9 T + p T^{2} \) 1.31.aj
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 7 T + p T^{2} \) 1.41.h
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 + T + p T^{2} \) 1.59.b
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 6 T + p T^{2} \) 1.67.g
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.085713913409790052853028658907, −7.23985546174929356934594091823, −6.62562683088835126985908816679, −6.03044718145626781721349809687, −5.07395847993219520314174220181, −4.40924580265552235914871714050, −3.34719057671558970325480717099, −3.20319627581987761682093460741, −1.49579777423118881078849042496, −0.957908752171835999022058384577, 0.957908752171835999022058384577, 1.49579777423118881078849042496, 3.20319627581987761682093460741, 3.34719057671558970325480717099, 4.40924580265552235914871714050, 5.07395847993219520314174220181, 6.03044718145626781721349809687, 6.62562683088835126985908816679, 7.23985546174929356934594091823, 8.085713913409790052853028658907

Graph of the $Z$-function along the critical line