Properties

Label 2-6480-1.1-c1-0-36
Degree $2$
Conductor $6480$
Sign $1$
Analytic cond. $51.7430$
Root an. cond. $7.19326$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 11-s + 7·19-s + 6·23-s + 25-s + 7·29-s − 31-s − 2·37-s − 9·41-s + 6·43-s − 2·47-s − 7·49-s + 55-s + 3·59-s − 10·61-s + 2·67-s + 71-s − 4·79-s − 6·83-s + 7·89-s + 7·95-s + 2·97-s + 9·101-s + 6·103-s − 2·107-s + 3·109-s + 6·115-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.301·11-s + 1.60·19-s + 1.25·23-s + 1/5·25-s + 1.29·29-s − 0.179·31-s − 0.328·37-s − 1.40·41-s + 0.914·43-s − 0.291·47-s − 49-s + 0.134·55-s + 0.390·59-s − 1.28·61-s + 0.244·67-s + 0.118·71-s − 0.450·79-s − 0.658·83-s + 0.741·89-s + 0.718·95-s + 0.203·97-s + 0.895·101-s + 0.591·103-s − 0.193·107-s + 0.287·109-s + 0.559·115-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6480\)    =    \(2^{4} \cdot 3^{4} \cdot 5\)
Sign: $1$
Analytic conductor: \(51.7430\)
Root analytic conductor: \(7.19326\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6480,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.483846630\)
\(L(\frac12)\) \(\approx\) \(2.483846630\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 + p T^{2} \)
11 \( 1 - T + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 - 7 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 - 7 T + p T^{2} \)
31 \( 1 + T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 9 T + p T^{2} \)
43 \( 1 - 6 T + p T^{2} \)
47 \( 1 + 2 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 - 3 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 - T + p T^{2} \)
73 \( 1 + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 - 7 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.013782739305065209674938865513, −7.20563270867233099742134342004, −6.68884312447935055180410682460, −5.87192668984368112346881578133, −5.13384207775117203035395052395, −4.58034932210475949768272897919, −3.39601205279103558946922706172, −2.90705015777726251765995675022, −1.72754772230830419362082532352, −0.860916160926714767313031169310, 0.860916160926714767313031169310, 1.72754772230830419362082532352, 2.90705015777726251765995675022, 3.39601205279103558946922706172, 4.58034932210475949768272897919, 5.13384207775117203035395052395, 5.87192668984368112346881578133, 6.68884312447935055180410682460, 7.20563270867233099742134342004, 8.013782739305065209674938865513

Graph of the $Z$-function along the critical line