Properties

Label 2-6480-1.1-c1-0-30
Degree $2$
Conductor $6480$
Sign $1$
Analytic cond. $51.7430$
Root an. cond. $7.19326$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 3.73·7-s + 3.46·11-s + 3.73·13-s + 3.46·17-s + 7.92·19-s − 0.464·23-s + 25-s − 6.92·29-s − 5.46·31-s − 3.73·35-s + 8·37-s + 5.19·41-s + 1.46·43-s + 6.46·47-s + 6.92·49-s − 12.4·53-s + 3.46·55-s − 8.66·59-s − 8.39·61-s + 3.73·65-s − 8·67-s + 6·71-s + 6.39·73-s − 12.9·77-s − 6.39·79-s + 8.53·83-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.41·7-s + 1.04·11-s + 1.03·13-s + 0.840·17-s + 1.81·19-s − 0.0967·23-s + 0.200·25-s − 1.28·29-s − 0.981·31-s − 0.630·35-s + 1.31·37-s + 0.811·41-s + 0.223·43-s + 0.942·47-s + 0.989·49-s − 1.71·53-s + 0.467·55-s − 1.12·59-s − 1.07·61-s + 0.462·65-s − 0.977·67-s + 0.712·71-s + 0.748·73-s − 1.47·77-s − 0.719·79-s + 0.936·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6480\)    =    \(2^{4} \cdot 3^{4} \cdot 5\)
Sign: $1$
Analytic conductor: \(51.7430\)
Root analytic conductor: \(7.19326\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6480,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.224368756\)
\(L(\frac12)\) \(\approx\) \(2.224368756\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 + 3.73T + 7T^{2} \)
11 \( 1 - 3.46T + 11T^{2} \)
13 \( 1 - 3.73T + 13T^{2} \)
17 \( 1 - 3.46T + 17T^{2} \)
19 \( 1 - 7.92T + 19T^{2} \)
23 \( 1 + 0.464T + 23T^{2} \)
29 \( 1 + 6.92T + 29T^{2} \)
31 \( 1 + 5.46T + 31T^{2} \)
37 \( 1 - 8T + 37T^{2} \)
41 \( 1 - 5.19T + 41T^{2} \)
43 \( 1 - 1.46T + 43T^{2} \)
47 \( 1 - 6.46T + 47T^{2} \)
53 \( 1 + 12.4T + 53T^{2} \)
59 \( 1 + 8.66T + 59T^{2} \)
61 \( 1 + 8.39T + 61T^{2} \)
67 \( 1 + 8T + 67T^{2} \)
71 \( 1 - 6T + 71T^{2} \)
73 \( 1 - 6.39T + 73T^{2} \)
79 \( 1 + 6.39T + 79T^{2} \)
83 \( 1 - 8.53T + 83T^{2} \)
89 \( 1 - 12T + 89T^{2} \)
97 \( 1 - 1.07T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.81954393643078066454034022857, −7.34931342603331488401936437746, −6.41697480664872051245282984620, −5.99243939984286688903532971375, −5.43431451567671090978770380573, −4.21796911302626611004598862950, −3.43358109148721695463216454045, −3.05528812677609273491182678646, −1.68679312723488129557104913657, −0.813472835380244922495323187130, 0.813472835380244922495323187130, 1.68679312723488129557104913657, 3.05528812677609273491182678646, 3.43358109148721695463216454045, 4.21796911302626611004598862950, 5.43431451567671090978770380573, 5.99243939984286688903532971375, 6.41697480664872051245282984620, 7.34931342603331488401936437746, 7.81954393643078066454034022857

Graph of the $Z$-function along the critical line