Properties

Label 2-6480-1.1-c1-0-29
Degree $2$
Conductor $6480$
Sign $1$
Analytic cond. $51.7430$
Root an. cond. $7.19326$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 0.331·7-s − 4.40·11-s + 6.98·13-s − 3.07·17-s + 7.55·19-s − 1.66·23-s + 25-s + 3.57·29-s − 5.64·31-s + 0.331·35-s + 7.64·37-s + 5.49·41-s + 7.07·43-s − 7.97·47-s − 6.88·49-s − 5.47·53-s − 4.40·55-s + 7.38·59-s + 0.592·61-s + 6.98·65-s − 5.22·67-s − 8.98·71-s − 8.05·73-s − 1.46·77-s + 10.9·79-s + 6.29·83-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.125·7-s − 1.32·11-s + 1.93·13-s − 0.744·17-s + 1.73·19-s − 0.347·23-s + 0.200·25-s + 0.663·29-s − 1.01·31-s + 0.0561·35-s + 1.25·37-s + 0.858·41-s + 1.07·43-s − 1.16·47-s − 0.984·49-s − 0.752·53-s − 0.594·55-s + 0.961·59-s + 0.0758·61-s + 0.865·65-s − 0.637·67-s − 1.06·71-s − 0.942·73-s − 0.166·77-s + 1.23·79-s + 0.690·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6480\)    =    \(2^{4} \cdot 3^{4} \cdot 5\)
Sign: $1$
Analytic conductor: \(51.7430\)
Root analytic conductor: \(7.19326\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6480,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.319252484\)
\(L(\frac12)\) \(\approx\) \(2.319252484\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 - 0.331T + 7T^{2} \)
11 \( 1 + 4.40T + 11T^{2} \)
13 \( 1 - 6.98T + 13T^{2} \)
17 \( 1 + 3.07T + 17T^{2} \)
19 \( 1 - 7.55T + 19T^{2} \)
23 \( 1 + 1.66T + 23T^{2} \)
29 \( 1 - 3.57T + 29T^{2} \)
31 \( 1 + 5.64T + 31T^{2} \)
37 \( 1 - 7.64T + 37T^{2} \)
41 \( 1 - 5.49T + 41T^{2} \)
43 \( 1 - 7.07T + 43T^{2} \)
47 \( 1 + 7.97T + 47T^{2} \)
53 \( 1 + 5.47T + 53T^{2} \)
59 \( 1 - 7.38T + 59T^{2} \)
61 \( 1 - 0.592T + 61T^{2} \)
67 \( 1 + 5.22T + 67T^{2} \)
71 \( 1 + 8.98T + 71T^{2} \)
73 \( 1 + 8.05T + 73T^{2} \)
79 \( 1 - 10.9T + 79T^{2} \)
83 \( 1 - 6.29T + 83T^{2} \)
89 \( 1 - 11.9T + 89T^{2} \)
97 \( 1 + 1.24T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.915981889565083572166218331575, −7.50629385869495944244885603102, −6.42076793873643625501271658952, −5.92580087899388782403044965996, −5.25187645704199186982455270215, −4.47353728382967180642034849876, −3.49058999990764495960044904378, −2.80886101622709067625655333676, −1.79694556849377185811927061473, −0.811831955513461632413192716327, 0.811831955513461632413192716327, 1.79694556849377185811927061473, 2.80886101622709067625655333676, 3.49058999990764495960044904378, 4.47353728382967180642034849876, 5.25187645704199186982455270215, 5.92580087899388782403044965996, 6.42076793873643625501271658952, 7.50629385869495944244885603102, 7.915981889565083572166218331575

Graph of the $Z$-function along the critical line