Properties

Label 2-648-216.211-c0-0-0
Degree $2$
Conductor $648$
Sign $0.835 - 0.549i$
Analytic cond. $0.323394$
Root an. cond. $0.568677$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.766 + 0.642i)2-s + (0.173 − 0.984i)4-s + (0.500 + 0.866i)8-s + (0.326 + 0.118i)11-s + (−0.939 − 0.342i)16-s + (0.766 − 1.32i)17-s + (0.939 + 1.62i)19-s + (−0.326 + 0.118i)22-s + (0.766 − 0.642i)25-s + (0.939 − 0.342i)32-s + (0.266 + 1.50i)34-s + (−1.76 − 0.642i)38-s + (1.43 + 1.20i)41-s + (−1.43 − 0.524i)43-s + (0.173 − 0.300i)44-s + ⋯
L(s)  = 1  + (−0.766 + 0.642i)2-s + (0.173 − 0.984i)4-s + (0.500 + 0.866i)8-s + (0.326 + 0.118i)11-s + (−0.939 − 0.342i)16-s + (0.766 − 1.32i)17-s + (0.939 + 1.62i)19-s + (−0.326 + 0.118i)22-s + (0.766 − 0.642i)25-s + (0.939 − 0.342i)32-s + (0.266 + 1.50i)34-s + (−1.76 − 0.642i)38-s + (1.43 + 1.20i)41-s + (−1.43 − 0.524i)43-s + (0.173 − 0.300i)44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.835 - 0.549i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.835 - 0.549i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(648\)    =    \(2^{3} \cdot 3^{4}\)
Sign: $0.835 - 0.549i$
Analytic conductor: \(0.323394\)
Root analytic conductor: \(0.568677\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{648} (523, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 648,\ (\ :0),\ 0.835 - 0.549i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.6843311926\)
\(L(\frac12)\) \(\approx\) \(0.6843311926\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.766 - 0.642i)T \)
3 \( 1 \)
good5 \( 1 + (-0.766 + 0.642i)T^{2} \)
7 \( 1 + (0.939 - 0.342i)T^{2} \)
11 \( 1 + (-0.326 - 0.118i)T + (0.766 + 0.642i)T^{2} \)
13 \( 1 + (-0.173 - 0.984i)T^{2} \)
17 \( 1 + (-0.766 + 1.32i)T + (-0.5 - 0.866i)T^{2} \)
19 \( 1 + (-0.939 - 1.62i)T + (-0.5 + 0.866i)T^{2} \)
23 \( 1 + (0.939 + 0.342i)T^{2} \)
29 \( 1 + (-0.173 + 0.984i)T^{2} \)
31 \( 1 + (0.939 + 0.342i)T^{2} \)
37 \( 1 + (0.5 + 0.866i)T^{2} \)
41 \( 1 + (-1.43 - 1.20i)T + (0.173 + 0.984i)T^{2} \)
43 \( 1 + (1.43 + 0.524i)T + (0.766 + 0.642i)T^{2} \)
47 \( 1 + (0.939 - 0.342i)T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 + (1.76 - 0.642i)T + (0.766 - 0.642i)T^{2} \)
61 \( 1 + (0.939 - 0.342i)T^{2} \)
67 \( 1 + (-0.266 - 0.223i)T + (0.173 + 0.984i)T^{2} \)
71 \( 1 + (0.5 + 0.866i)T^{2} \)
73 \( 1 + (0.766 + 1.32i)T + (-0.5 + 0.866i)T^{2} \)
79 \( 1 + (-0.173 + 0.984i)T^{2} \)
83 \( 1 + (-0.766 + 0.642i)T + (0.173 - 0.984i)T^{2} \)
89 \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \)
97 \( 1 + (0.326 + 0.118i)T + (0.766 + 0.642i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.56697508395088540017951998283, −9.793117629987170362459940426746, −9.207214205587790000844266514206, −8.078256398799320682364422798992, −7.50613816767306787665313696778, −6.49776379574675392942729266500, −5.60850636494450442091549474917, −4.64058123968197968418501812715, −3.04572850693123334834849917021, −1.37093533327596151907169413100, 1.34644698177982694049245314355, 2.84081477783645816140093298989, 3.81137319305538519004421568370, 5.08936252215798086106877877919, 6.45995955499045173989171992993, 7.35641735541252389475777210990, 8.236844982613822606869399130482, 9.102590634979019394848218561341, 9.751456367551117553848662016843, 10.77022737266724745789978352095

Graph of the $Z$-function along the critical line