| L(s) = 1 | + (1.34 − 0.441i)2-s + (1.60 − 1.18i)4-s + (0.721 − 0.860i)5-s + (1.31 + 0.479i)7-s + (1.63 − 2.30i)8-s + (0.589 − 1.47i)10-s + (−1.05 − 1.26i)11-s + (−0.671 − 0.118i)13-s + (1.98 + 0.0622i)14-s + (1.18 − 3.82i)16-s + (−0.907 + 1.57i)17-s + (2.96 − 1.71i)19-s + (0.140 − 2.24i)20-s + (−1.97 − 1.22i)22-s + (3.62 − 1.31i)23-s + ⋯ |
| L(s) = 1 | + (0.949 − 0.312i)2-s + (0.804 − 0.593i)4-s + (0.322 − 0.384i)5-s + (0.498 + 0.181i)7-s + (0.579 − 0.815i)8-s + (0.186 − 0.466i)10-s + (−0.319 − 0.380i)11-s + (−0.186 − 0.0328i)13-s + (0.529 + 0.0166i)14-s + (0.295 − 0.955i)16-s + (−0.220 + 0.381i)17-s + (0.680 − 0.393i)19-s + (0.0315 − 0.501i)20-s + (−0.421 − 0.261i)22-s + (0.755 − 0.274i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.586 + 0.809i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.586 + 0.809i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.58049 - 1.31666i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.58049 - 1.31666i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-1.34 + 0.441i)T \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 + (-0.721 + 0.860i)T + (-0.868 - 4.92i)T^{2} \) |
| 7 | \( 1 + (-1.31 - 0.479i)T + (5.36 + 4.49i)T^{2} \) |
| 11 | \( 1 + (1.05 + 1.26i)T + (-1.91 + 10.8i)T^{2} \) |
| 13 | \( 1 + (0.671 + 0.118i)T + (12.2 + 4.44i)T^{2} \) |
| 17 | \( 1 + (0.907 - 1.57i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.96 + 1.71i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.62 + 1.31i)T + (17.6 - 14.7i)T^{2} \) |
| 29 | \( 1 + (3.92 - 0.691i)T + (27.2 - 9.91i)T^{2} \) |
| 31 | \( 1 + (6.21 - 2.26i)T + (23.7 - 19.9i)T^{2} \) |
| 37 | \( 1 + (-3.83 - 2.21i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.952 - 5.40i)T + (-38.5 - 14.0i)T^{2} \) |
| 43 | \( 1 + (7.26 + 8.65i)T + (-7.46 + 42.3i)T^{2} \) |
| 47 | \( 1 + (-11.5 - 4.20i)T + (36.0 + 30.2i)T^{2} \) |
| 53 | \( 1 - 6.89iT - 53T^{2} \) |
| 59 | \( 1 + (-6.78 + 8.09i)T + (-10.2 - 58.1i)T^{2} \) |
| 61 | \( 1 + (-1.24 + 3.40i)T + (-46.7 - 39.2i)T^{2} \) |
| 67 | \( 1 + (11.9 + 2.10i)T + (62.9 + 22.9i)T^{2} \) |
| 71 | \( 1 + (6.80 - 11.7i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-4.73 - 8.20i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.59 - 9.03i)T + (-74.2 + 27.0i)T^{2} \) |
| 83 | \( 1 + (1.29 - 0.228i)T + (77.9 - 28.3i)T^{2} \) |
| 89 | \( 1 + (-3.52 - 6.10i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (6.33 - 5.31i)T + (16.8 - 95.5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.74741160756790377104056702040, −9.663405898995435346135828055160, −8.799110069242941702367229611455, −7.62078142314617763486127356619, −6.71239396212516780510782717623, −5.48620338705365594308934668610, −5.09363376026378072619380455578, −3.83751514431339554423225575872, −2.67121027223647522167114331311, −1.38827624571116212475343943147,
1.94493114602653349759693541804, 3.08352963341420159934392921159, 4.28378192405202149623928219631, 5.21433292154515604937873908425, 6.04623848629487401758904926490, 7.20024302057655413186466805163, 7.63199715584993744265029451610, 8.856964076883014034288935135528, 9.997101547793397133441919762376, 10.88693602217268664808811624043