| L(s) = 1 | + (−0.289 − 1.38i)2-s + (−1.83 + 0.801i)4-s + (1.55 − 1.85i)5-s + (0.763 + 0.278i)7-s + (1.63 + 2.30i)8-s + (−3.02 − 1.61i)10-s + (2.23 + 2.65i)11-s + (2.83 + 0.500i)13-s + (0.163 − 1.13i)14-s + (2.71 − 2.93i)16-s + (3.55 − 6.15i)17-s + (−5.16 + 2.98i)19-s + (−1.36 + 4.65i)20-s + (3.03 − 3.85i)22-s + (6.58 − 2.39i)23-s + ⋯ |
| L(s) = 1 | + (−0.204 − 0.978i)2-s + (−0.916 + 0.400i)4-s + (0.696 − 0.830i)5-s + (0.288 + 0.105i)7-s + (0.579 + 0.814i)8-s + (−0.955 − 0.511i)10-s + (0.672 + 0.801i)11-s + (0.787 + 0.138i)13-s + (0.0437 − 0.304i)14-s + (0.678 − 0.734i)16-s + (0.861 − 1.49i)17-s + (−1.18 + 0.683i)19-s + (−0.305 + 1.03i)20-s + (0.646 − 0.822i)22-s + (1.37 − 0.500i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0102 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0102 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.08427 - 1.07316i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.08427 - 1.07316i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.289 + 1.38i)T \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 + (-1.55 + 1.85i)T + (-0.868 - 4.92i)T^{2} \) |
| 7 | \( 1 + (-0.763 - 0.278i)T + (5.36 + 4.49i)T^{2} \) |
| 11 | \( 1 + (-2.23 - 2.65i)T + (-1.91 + 10.8i)T^{2} \) |
| 13 | \( 1 + (-2.83 - 0.500i)T + (12.2 + 4.44i)T^{2} \) |
| 17 | \( 1 + (-3.55 + 6.15i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (5.16 - 2.98i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-6.58 + 2.39i)T + (17.6 - 14.7i)T^{2} \) |
| 29 | \( 1 + (6.59 - 1.16i)T + (27.2 - 9.91i)T^{2} \) |
| 31 | \( 1 + (-2.55 + 0.930i)T + (23.7 - 19.9i)T^{2} \) |
| 37 | \( 1 + (-3.59 - 2.07i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.742 + 4.20i)T + (-38.5 - 14.0i)T^{2} \) |
| 43 | \( 1 + (1.77 + 2.10i)T + (-7.46 + 42.3i)T^{2} \) |
| 47 | \( 1 + (2.80 + 1.01i)T + (36.0 + 30.2i)T^{2} \) |
| 53 | \( 1 + 7.38iT - 53T^{2} \) |
| 59 | \( 1 + (-4.72 + 5.62i)T + (-10.2 - 58.1i)T^{2} \) |
| 61 | \( 1 + (-0.0900 + 0.247i)T + (-46.7 - 39.2i)T^{2} \) |
| 67 | \( 1 + (-2.20 - 0.388i)T + (62.9 + 22.9i)T^{2} \) |
| 71 | \( 1 + (2.69 - 4.67i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (1.97 + 3.41i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.76 - 10.0i)T + (-74.2 + 27.0i)T^{2} \) |
| 83 | \( 1 + (7.86 - 1.38i)T + (77.9 - 28.3i)T^{2} \) |
| 89 | \( 1 + (2.14 + 3.72i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-4.28 + 3.59i)T + (16.8 - 95.5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.24833838601041835669484446869, −9.454970767709875234666712599456, −8.947485185828662199868104642211, −8.058731404676124689341177524850, −6.82864003767133472192921407532, −5.43779515892634525870557456005, −4.73366514133917495369862504291, −3.61747775463205296341598132166, −2.15111500184829101408101711384, −1.12883286150674918639953041280,
1.39458883857835081544388759895, 3.26999046925849254542774209148, 4.38198754812947627407077164362, 5.84408129226111095675584430719, 6.17049655312142469876915846993, 7.11229365976858039642466859282, 8.188790101656126585306599457382, 8.864024372298489961749770825094, 9.789368226454290484555875909212, 10.73571903543584603275588109476