Properties

Label 2-648-216.11-c1-0-33
Degree $2$
Conductor $648$
Sign $-0.409 - 0.912i$
Analytic cond. $5.17430$
Root an. cond. $2.27471$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.315 − 1.37i)2-s + (−1.80 − 0.868i)4-s + (0.437 + 0.159i)5-s + (−3.46 − 0.610i)7-s + (−1.76 + 2.21i)8-s + (0.357 − 0.552i)10-s + (−0.485 − 1.33i)11-s + (−1.62 − 1.93i)13-s + (−1.93 + 4.58i)14-s + (2.49 + 3.12i)16-s + (0.667 − 0.385i)17-s + (−3.66 + 6.34i)19-s + (−0.649 − 0.666i)20-s + (−1.99 + 0.249i)22-s + (1.25 + 7.12i)23-s + ⋯
L(s)  = 1  + (0.222 − 0.974i)2-s + (−0.900 − 0.434i)4-s + (0.195 + 0.0711i)5-s + (−1.30 − 0.230i)7-s + (−0.624 + 0.781i)8-s + (0.112 − 0.174i)10-s + (−0.146 − 0.402i)11-s + (−0.449 − 0.535i)13-s + (−0.516 + 1.22i)14-s + (0.622 + 0.782i)16-s + (0.161 − 0.0934i)17-s + (−0.839 + 1.45i)19-s + (−0.145 − 0.149i)20-s + (−0.425 + 0.0531i)22-s + (0.261 + 1.48i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.409 - 0.912i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.409 - 0.912i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(648\)    =    \(2^{3} \cdot 3^{4}\)
Sign: $-0.409 - 0.912i$
Analytic conductor: \(5.17430\)
Root analytic conductor: \(2.27471\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{648} (35, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 648,\ (\ :1/2),\ -0.409 - 0.912i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0702067 + 0.108458i\)
\(L(\frac12)\) \(\approx\) \(0.0702067 + 0.108458i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.315 + 1.37i)T \)
3 \( 1 \)
good5 \( 1 + (-0.437 - 0.159i)T + (3.83 + 3.21i)T^{2} \)
7 \( 1 + (3.46 + 0.610i)T + (6.57 + 2.39i)T^{2} \)
11 \( 1 + (0.485 + 1.33i)T + (-8.42 + 7.07i)T^{2} \)
13 \( 1 + (1.62 + 1.93i)T + (-2.25 + 12.8i)T^{2} \)
17 \( 1 + (-0.667 + 0.385i)T + (8.5 - 14.7i)T^{2} \)
19 \( 1 + (3.66 - 6.34i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-1.25 - 7.12i)T + (-21.6 + 7.86i)T^{2} \)
29 \( 1 + (3.15 + 2.64i)T + (5.03 + 28.5i)T^{2} \)
31 \( 1 + (7.80 - 1.37i)T + (29.1 - 10.6i)T^{2} \)
37 \( 1 + (2.79 - 1.61i)T + (18.5 - 32.0i)T^{2} \)
41 \( 1 + (1.74 + 2.07i)T + (-7.11 + 40.3i)T^{2} \)
43 \( 1 + (1.99 - 0.726i)T + (32.9 - 27.6i)T^{2} \)
47 \( 1 + (-1.82 + 10.3i)T + (-44.1 - 16.0i)T^{2} \)
53 \( 1 - 8.73T + 53T^{2} \)
59 \( 1 + (0.818 - 2.24i)T + (-45.1 - 37.9i)T^{2} \)
61 \( 1 + (-3.02 - 0.533i)T + (57.3 + 20.8i)T^{2} \)
67 \( 1 + (4.04 - 3.39i)T + (11.6 - 65.9i)T^{2} \)
71 \( 1 + (5.70 + 9.88i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (-2.96 + 5.12i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-8.94 + 10.6i)T + (-13.7 - 77.7i)T^{2} \)
83 \( 1 + (7.41 - 8.83i)T + (-14.4 - 81.7i)T^{2} \)
89 \( 1 + (8.59 + 4.96i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 + (1.95 - 0.710i)T + (74.3 - 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.08427722656839940002068968207, −9.459924117166106111467899156924, −8.458035113131889275733039358321, −7.33858461242303974986095585675, −6.02805912787721765201558756899, −5.43696602722016416649831588241, −3.87165259710787591521720316846, −3.29342527228168236320308387548, −1.94363329894808626000404113062, −0.06096080930938723741635039079, 2.57105086964427760666729935673, 3.84222252185133951029314711492, 4.87727860028512317364871516230, 5.89314675749352045575969583089, 6.77419902658980559630805610661, 7.29037319120715506384206552356, 8.653214685546220013015259562080, 9.259950784694153764850969848045, 9.933952542132831639741713049479, 11.08973587497913863637563837045

Graph of the $Z$-function along the critical line