Properties

Label 2-648-216.11-c1-0-29
Degree $2$
Conductor $648$
Sign $-0.987 + 0.155i$
Analytic cond. $5.17430$
Root an. cond. $2.27471$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.41 − 0.0781i)2-s + (1.98 + 0.220i)4-s + (0.479 + 0.174i)5-s + (−1.63 − 0.287i)7-s + (−2.78 − 0.467i)8-s + (−0.663 − 0.283i)10-s + (0.576 + 1.58i)11-s + (−3.81 − 4.54i)13-s + (2.28 + 0.533i)14-s + (3.90 + 0.877i)16-s + (−5.08 + 2.93i)17-s + (−1.91 + 3.32i)19-s + (0.914 + 0.452i)20-s + (−0.690 − 2.28i)22-s + (−0.765 − 4.34i)23-s + ⋯
L(s)  = 1  + (−0.998 − 0.0552i)2-s + (0.993 + 0.110i)4-s + (0.214 + 0.0780i)5-s + (−0.616 − 0.108i)7-s + (−0.986 − 0.165i)8-s + (−0.209 − 0.0897i)10-s + (0.173 + 0.477i)11-s + (−1.05 − 1.26i)13-s + (0.609 + 0.142i)14-s + (0.975 + 0.219i)16-s + (−1.23 + 0.712i)17-s + (−0.440 + 0.762i)19-s + (0.204 + 0.101i)20-s + (−0.147 − 0.486i)22-s + (−0.159 − 0.905i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.987 + 0.155i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.987 + 0.155i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(648\)    =    \(2^{3} \cdot 3^{4}\)
Sign: $-0.987 + 0.155i$
Analytic conductor: \(5.17430\)
Root analytic conductor: \(2.27471\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{648} (35, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 648,\ (\ :1/2),\ -0.987 + 0.155i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.00720230 - 0.0919894i\)
\(L(\frac12)\) \(\approx\) \(0.00720230 - 0.0919894i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.41 + 0.0781i)T \)
3 \( 1 \)
good5 \( 1 + (-0.479 - 0.174i)T + (3.83 + 3.21i)T^{2} \)
7 \( 1 + (1.63 + 0.287i)T + (6.57 + 2.39i)T^{2} \)
11 \( 1 + (-0.576 - 1.58i)T + (-8.42 + 7.07i)T^{2} \)
13 \( 1 + (3.81 + 4.54i)T + (-2.25 + 12.8i)T^{2} \)
17 \( 1 + (5.08 - 2.93i)T + (8.5 - 14.7i)T^{2} \)
19 \( 1 + (1.91 - 3.32i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (0.765 + 4.34i)T + (-21.6 + 7.86i)T^{2} \)
29 \( 1 + (0.748 + 0.628i)T + (5.03 + 28.5i)T^{2} \)
31 \( 1 + (-6.88 + 1.21i)T + (29.1 - 10.6i)T^{2} \)
37 \( 1 + (5.88 - 3.39i)T + (18.5 - 32.0i)T^{2} \)
41 \( 1 + (-2.01 - 2.40i)T + (-7.11 + 40.3i)T^{2} \)
43 \( 1 + (-0.826 + 0.300i)T + (32.9 - 27.6i)T^{2} \)
47 \( 1 + (-0.0117 + 0.0666i)T + (-44.1 - 16.0i)T^{2} \)
53 \( 1 + 5.83T + 53T^{2} \)
59 \( 1 + (-0.521 + 1.43i)T + (-45.1 - 37.9i)T^{2} \)
61 \( 1 + (10.6 + 1.88i)T + (57.3 + 20.8i)T^{2} \)
67 \( 1 + (7.05 - 5.92i)T + (11.6 - 65.9i)T^{2} \)
71 \( 1 + (8.21 + 14.2i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (-0.650 + 1.12i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (3.66 - 4.36i)T + (-13.7 - 77.7i)T^{2} \)
83 \( 1 + (-1.44 + 1.72i)T + (-14.4 - 81.7i)T^{2} \)
89 \( 1 + (11.2 + 6.52i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 + (-13.9 + 5.06i)T + (74.3 - 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.27587894417079526457987949330, −9.402407983233056898593485947801, −8.382982194363419211517542884293, −7.70131542762958086841420517622, −6.59953917516759561785683383993, −6.03116453248682143003461140066, −4.50101515128966548320871810023, −3.04582381292065602411963281104, −1.99845696844882610470993098398, −0.06223511608293130215160348830, 1.89402104358406954668986026839, 2.98148409262156312209112675946, 4.53013801960585639268035951384, 5.85892263570790399939043058477, 6.79002465003423570022661446604, 7.33700185439802495009974575711, 8.645399429889696320230450775192, 9.307884967650786191644199459174, 9.768287743847489245917412745829, 10.93862585717783817272330726940

Graph of the $Z$-function along the critical line