Properties

Label 2-648-1.1-c3-0-16
Degree $2$
Conductor $648$
Sign $1$
Analytic cond. $38.2332$
Root an. cond. $6.18330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 17.9·5-s + 7.28·7-s − 4.61·11-s + 29.8·13-s − 67.9·17-s + 111.·19-s + 218.·23-s + 198.·25-s − 34.2·29-s − 77.7·31-s + 130.·35-s − 347.·37-s − 234.·41-s + 53.3·43-s + 385.·47-s − 289.·49-s + 461.·53-s − 82.9·55-s − 7.16·59-s + 416.·61-s + 537.·65-s − 869.·67-s + 585.·71-s − 733.·73-s − 33.6·77-s + 1.17e3·79-s + 67.4·83-s + ⋯
L(s)  = 1  + 1.60·5-s + 0.393·7-s − 0.126·11-s + 0.637·13-s − 0.969·17-s + 1.34·19-s + 1.98·23-s + 1.58·25-s − 0.219·29-s − 0.450·31-s + 0.632·35-s − 1.54·37-s − 0.893·41-s + 0.189·43-s + 1.19·47-s − 0.845·49-s + 1.19·53-s − 0.203·55-s − 0.0158·59-s + 0.873·61-s + 1.02·65-s − 1.58·67-s + 0.979·71-s − 1.17·73-s − 0.0497·77-s + 1.66·79-s + 0.0891·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(648\)    =    \(2^{3} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(38.2332\)
Root analytic conductor: \(6.18330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 648,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.091762485\)
\(L(\frac12)\) \(\approx\) \(3.091762485\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 17.9T + 125T^{2} \)
7 \( 1 - 7.28T + 343T^{2} \)
11 \( 1 + 4.61T + 1.33e3T^{2} \)
13 \( 1 - 29.8T + 2.19e3T^{2} \)
17 \( 1 + 67.9T + 4.91e3T^{2} \)
19 \( 1 - 111.T + 6.85e3T^{2} \)
23 \( 1 - 218.T + 1.21e4T^{2} \)
29 \( 1 + 34.2T + 2.43e4T^{2} \)
31 \( 1 + 77.7T + 2.97e4T^{2} \)
37 \( 1 + 347.T + 5.06e4T^{2} \)
41 \( 1 + 234.T + 6.89e4T^{2} \)
43 \( 1 - 53.3T + 7.95e4T^{2} \)
47 \( 1 - 385.T + 1.03e5T^{2} \)
53 \( 1 - 461.T + 1.48e5T^{2} \)
59 \( 1 + 7.16T + 2.05e5T^{2} \)
61 \( 1 - 416.T + 2.26e5T^{2} \)
67 \( 1 + 869.T + 3.00e5T^{2} \)
71 \( 1 - 585.T + 3.57e5T^{2} \)
73 \( 1 + 733.T + 3.89e5T^{2} \)
79 \( 1 - 1.17e3T + 4.93e5T^{2} \)
83 \( 1 - 67.4T + 5.71e5T^{2} \)
89 \( 1 - 965.T + 7.04e5T^{2} \)
97 \( 1 - 1.43T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.20186565743602440759272056021, −9.135741287554872939941546569339, −8.807293950129411968261114901400, −7.34681412809074476523549978283, −6.54697863295501891884993760593, −5.51395184774022755677305491873, −4.94102960701385353858174633326, −3.33109096046514538282057945969, −2.14618706531835461437325204287, −1.12926205032245090664232731970, 1.12926205032245090664232731970, 2.14618706531835461437325204287, 3.33109096046514538282057945969, 4.94102960701385353858174633326, 5.51395184774022755677305491873, 6.54697863295501891884993760593, 7.34681412809074476523549978283, 8.807293950129411968261114901400, 9.135741287554872939941546569339, 10.20186565743602440759272056021

Graph of the $Z$-function along the critical line