Properties

Label 2-648-1.1-c1-0-11
Degree $2$
Conductor $648$
Sign $-1$
Analytic cond. $5.17430$
Root an. cond. $2.27471$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 3·7-s − 5·11-s − 5·13-s + 2·17-s − 4·19-s + 23-s − 4·25-s + 9·29-s − 31-s − 3·35-s − 6·37-s − 3·41-s + 43-s + 3·47-s + 2·49-s − 2·53-s − 5·55-s − 11·59-s + 7·61-s − 5·65-s − 67-s − 4·71-s − 2·73-s + 15·77-s + 79-s − 83-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.13·7-s − 1.50·11-s − 1.38·13-s + 0.485·17-s − 0.917·19-s + 0.208·23-s − 4/5·25-s + 1.67·29-s − 0.179·31-s − 0.507·35-s − 0.986·37-s − 0.468·41-s + 0.152·43-s + 0.437·47-s + 2/7·49-s − 0.274·53-s − 0.674·55-s − 1.43·59-s + 0.896·61-s − 0.620·65-s − 0.122·67-s − 0.474·71-s − 0.234·73-s + 1.70·77-s + 0.112·79-s − 0.109·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(648\)    =    \(2^{3} \cdot 3^{4}\)
Sign: $-1$
Analytic conductor: \(5.17430\)
Root analytic conductor: \(2.27471\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 648,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 11 T + p T^{2} \) 1.59.l
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 + T + p T^{2} \) 1.67.b
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 + T + p T^{2} \) 1.83.b
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 + 13 T + p T^{2} \) 1.97.n
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.13681284927785547962865876897, −9.489148932003317588238101757941, −8.359584896208198912892556811654, −7.43764095199028116947875415823, −6.53308020646296798141338084684, −5.57057938485456350288330386239, −4.67089571149572557248085150675, −3.15917888226170604209305923594, −2.30173437261677938790892627190, 0, 2.30173437261677938790892627190, 3.15917888226170604209305923594, 4.67089571149572557248085150675, 5.57057938485456350288330386239, 6.53308020646296798141338084684, 7.43764095199028116947875415823, 8.359584896208198912892556811654, 9.489148932003317588238101757941, 10.13681284927785547962865876897

Graph of the $Z$-function along the critical line