Properties

Label 2-64400-1.1-c1-0-43
Degree $2$
Conductor $64400$
Sign $-1$
Analytic cond. $514.236$
Root an. cond. $22.6767$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 7-s − 2·9-s + 3·11-s − 3·13-s − 3·17-s + 2·19-s − 21-s + 23-s − 5·27-s + 3·29-s + 4·31-s + 3·33-s − 8·37-s − 3·39-s − 10·41-s + 4·43-s + 13·47-s + 49-s − 3·51-s + 2·57-s + 8·59-s − 10·61-s + 2·63-s − 6·67-s + 69-s − 6·73-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.377·7-s − 2/3·9-s + 0.904·11-s − 0.832·13-s − 0.727·17-s + 0.458·19-s − 0.218·21-s + 0.208·23-s − 0.962·27-s + 0.557·29-s + 0.718·31-s + 0.522·33-s − 1.31·37-s − 0.480·39-s − 1.56·41-s + 0.609·43-s + 1.89·47-s + 1/7·49-s − 0.420·51-s + 0.264·57-s + 1.04·59-s − 1.28·61-s + 0.251·63-s − 0.733·67-s + 0.120·69-s − 0.702·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 64400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(64400\)    =    \(2^{4} \cdot 5^{2} \cdot 7 \cdot 23\)
Sign: $-1$
Analytic conductor: \(514.236\)
Root analytic conductor: \(22.6767\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 64400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
23 \( 1 - T \)
good3 \( 1 - T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
13 \( 1 + 3 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 + 10 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 13 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 - 8 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + 6 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 + 7 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 - 5 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.33761318671570, −13.98386370677391, −13.68937166852869, −13.05513478126767, −12.38291623045649, −11.95738000668031, −11.61232432109331, −10.97094501207935, −10.25092171893976, −9.951622505183890, −9.218573348926201, −8.800952496028867, −8.567195489366087, −7.764805612140842, −7.070521405047083, −6.908798122998405, −5.985157554170532, −5.695465357468699, −4.751785331372895, −4.416792669136602, −3.490591435033466, −3.175034208905933, −2.428728938774904, −1.884765994885854, −0.9053750014014550, 0, 0.9053750014014550, 1.884765994885854, 2.428728938774904, 3.175034208905933, 3.490591435033466, 4.416792669136602, 4.751785331372895, 5.695465357468699, 5.985157554170532, 6.908798122998405, 7.070521405047083, 7.764805612140842, 8.567195489366087, 8.800952496028867, 9.218573348926201, 9.951622505183890, 10.25092171893976, 10.97094501207935, 11.61232432109331, 11.95738000668031, 12.38291623045649, 13.05513478126767, 13.68937166852869, 13.98386370677391, 14.33761318671570

Graph of the $Z$-function along the critical line