Properties

Label 2-64400-1.1-c1-0-14
Degree $2$
Conductor $64400$
Sign $1$
Analytic cond. $514.236$
Root an. cond. $22.6767$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 7-s + 9-s − 6·11-s + 4·13-s + 2·17-s − 4·19-s + 2·21-s + 23-s − 4·27-s − 10·29-s + 8·31-s − 12·33-s + 8·37-s + 8·39-s − 2·41-s + 6·43-s + 12·47-s + 49-s + 4·51-s − 12·53-s − 8·57-s + 6·59-s − 6·61-s + 63-s − 2·67-s + 2·69-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.377·7-s + 1/3·9-s − 1.80·11-s + 1.10·13-s + 0.485·17-s − 0.917·19-s + 0.436·21-s + 0.208·23-s − 0.769·27-s − 1.85·29-s + 1.43·31-s − 2.08·33-s + 1.31·37-s + 1.28·39-s − 0.312·41-s + 0.914·43-s + 1.75·47-s + 1/7·49-s + 0.560·51-s − 1.64·53-s − 1.05·57-s + 0.781·59-s − 0.768·61-s + 0.125·63-s − 0.244·67-s + 0.240·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 64400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(64400\)    =    \(2^{4} \cdot 5^{2} \cdot 7 \cdot 23\)
Sign: $1$
Analytic conductor: \(514.236\)
Root analytic conductor: \(22.6767\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 64400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.032806638\)
\(L(\frac12)\) \(\approx\) \(3.032806638\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
23 \( 1 - T \)
good3 \( 1 - 2 T + p T^{2} \)
11 \( 1 + 6 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
29 \( 1 + 10 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 - 6 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 + 12 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 + 6 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 + 16 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.22352456293199, −13.67506911726391, −13.27142873026874, −12.98040350002019, −12.40993750099642, −11.63646832782870, −10.99602855445644, −10.79677155554340, −10.12522378584050, −9.591696127029613, −8.956266988863860, −8.517089039619124, −8.115963398586659, −7.528272872906612, −7.385571398908840, −6.154277346468957, −5.908685507163184, −5.253751800915623, −4.467044454023256, −4.015833396155552, −3.219124437037027, −2.770053408180352, −2.224087384680488, −1.534027794017740, −0.5260700166563104, 0.5260700166563104, 1.534027794017740, 2.224087384680488, 2.770053408180352, 3.219124437037027, 4.015833396155552, 4.467044454023256, 5.253751800915623, 5.908685507163184, 6.154277346468957, 7.385571398908840, 7.528272872906612, 8.115963398586659, 8.517089039619124, 8.956266988863860, 9.591696127029613, 10.12522378584050, 10.79677155554340, 10.99602855445644, 11.63646832782870, 12.40993750099642, 12.98040350002019, 13.27142873026874, 13.67506911726391, 14.22352456293199

Graph of the $Z$-function along the critical line