Properties

Label 2-644-161.100-c1-0-0
Degree $2$
Conductor $644$
Sign $-0.896 + 0.443i$
Analytic cond. $5.14236$
Root an. cond. $2.26767$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.41 + 1.99i)3-s + (0.612 − 0.118i)5-s + (0.710 − 2.54i)7-s + (−0.973 − 2.81i)9-s + (−4.76 + 3.74i)11-s + (−1.04 + 0.670i)13-s + (−0.633 + 1.38i)15-s + (−1.87 − 1.78i)17-s + (−4.64 + 4.42i)19-s + (4.06 + 5.02i)21-s + (1.72 − 4.47i)23-s + (−4.28 + 1.71i)25-s + (−0.0568 − 0.0167i)27-s + (5.95 − 1.74i)29-s + (−5.81 + 0.555i)31-s + ⋯
L(s)  = 1  + (−0.818 + 1.14i)3-s + (0.273 − 0.0527i)5-s + (0.268 − 0.963i)7-s + (−0.324 − 0.937i)9-s + (−1.43 + 1.13i)11-s + (−0.289 + 0.185i)13-s + (−0.163 + 0.358i)15-s + (−0.455 − 0.434i)17-s + (−1.06 + 1.01i)19-s + (0.887 + 1.09i)21-s + (0.360 − 0.932i)23-s + (−0.856 + 0.342i)25-s + (−0.0109 − 0.00321i)27-s + (1.10 − 0.324i)29-s + (−1.04 + 0.0997i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 644 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.896 + 0.443i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 644 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.896 + 0.443i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(644\)    =    \(2^{2} \cdot 7 \cdot 23\)
Sign: $-0.896 + 0.443i$
Analytic conductor: \(5.14236\)
Root analytic conductor: \(2.26767\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{644} (261, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 644,\ (\ :1/2),\ -0.896 + 0.443i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0476257 - 0.203712i\)
\(L(\frac12)\) \(\approx\) \(0.0476257 - 0.203712i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + (-0.710 + 2.54i)T \)
23 \( 1 + (-1.72 + 4.47i)T \)
good3 \( 1 + (1.41 - 1.99i)T + (-0.981 - 2.83i)T^{2} \)
5 \( 1 + (-0.612 + 0.118i)T + (4.64 - 1.85i)T^{2} \)
11 \( 1 + (4.76 - 3.74i)T + (2.59 - 10.6i)T^{2} \)
13 \( 1 + (1.04 - 0.670i)T + (5.40 - 11.8i)T^{2} \)
17 \( 1 + (1.87 + 1.78i)T + (0.808 + 16.9i)T^{2} \)
19 \( 1 + (4.64 - 4.42i)T + (0.904 - 18.9i)T^{2} \)
29 \( 1 + (-5.95 + 1.74i)T + (24.3 - 15.6i)T^{2} \)
31 \( 1 + (5.81 - 0.555i)T + (30.4 - 5.86i)T^{2} \)
37 \( 1 + (-1.94 - 5.61i)T + (-29.0 + 22.8i)T^{2} \)
41 \( 1 + (5.00 + 5.77i)T + (-5.83 + 40.5i)T^{2} \)
43 \( 1 + (2.57 + 5.63i)T + (-28.1 + 32.4i)T^{2} \)
47 \( 1 + (2.84 - 4.92i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (-0.507 + 10.6i)T + (-52.7 - 5.03i)T^{2} \)
59 \( 1 + (-8.33 - 4.29i)T + (34.2 + 48.0i)T^{2} \)
61 \( 1 + (1.81 + 2.54i)T + (-19.9 + 57.6i)T^{2} \)
67 \( 1 + (10.0 - 4.03i)T + (48.4 - 46.2i)T^{2} \)
71 \( 1 + (-1.01 + 7.06i)T + (-68.1 - 20.0i)T^{2} \)
73 \( 1 + (-2.75 - 11.3i)T + (-64.8 + 33.4i)T^{2} \)
79 \( 1 + (-0.428 - 9.00i)T + (-78.6 + 7.50i)T^{2} \)
83 \( 1 + (5.77 - 6.66i)T + (-11.8 - 82.1i)T^{2} \)
89 \( 1 + (10.6 + 1.01i)T + (87.3 + 16.8i)T^{2} \)
97 \( 1 + (-9.75 - 11.2i)T + (-13.8 + 96.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.76450213417081448131481307604, −10.16409739688273525263634494597, −9.889809395841121694568220805600, −8.501548703420837285478040508512, −7.49753912247242208275269079096, −6.53615143172193407614163429143, −5.28312367583587825928784292836, −4.71976816422679944242723471992, −3.90107474363935976978325187530, −2.17676605079866610044802342680, 0.11565574003597188324733224980, 1.88933384646138863011407444901, 2.91829548348020519964680463744, 4.88192615073883913971650561906, 5.74722142510556239207077468492, 6.26148570776177387728510296184, 7.38055699943618367656331847434, 8.219311394294203653895519170557, 8.993819211474364738908383888290, 10.32206455939864416196196337497

Graph of the $Z$-function along the critical line