Properties

Label 2-640-128.85-c1-0-54
Degree $2$
Conductor $640$
Sign $0.910 + 0.412i$
Analytic cond. $5.11042$
Root an. cond. $2.26062$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.34 + 0.426i)2-s + (1.96 − 2.39i)3-s + (1.63 + 1.14i)4-s + (−0.956 + 0.290i)5-s + (3.67 − 2.39i)6-s + (4.41 + 0.877i)7-s + (1.71 + 2.24i)8-s + (−1.28 − 6.48i)9-s + (−1.41 − 0.0165i)10-s + (−3.98 − 0.392i)11-s + (5.97 − 1.66i)12-s + (−1.64 + 5.42i)13-s + (5.57 + 3.06i)14-s + (−1.18 + 2.86i)15-s + (1.35 + 3.76i)16-s + (−1.47 − 3.55i)17-s + ⋯
L(s)  = 1  + (0.953 + 0.301i)2-s + (1.13 − 1.38i)3-s + (0.818 + 0.574i)4-s + (−0.427 + 0.129i)5-s + (1.49 − 0.976i)6-s + (1.66 + 0.331i)7-s + (0.606 + 0.794i)8-s + (−0.429 − 2.16i)9-s + (−0.447 − 0.00522i)10-s + (−1.20 − 0.118i)11-s + (1.72 − 0.479i)12-s + (−0.456 + 1.50i)13-s + (1.49 + 0.819i)14-s + (−0.306 + 0.739i)15-s + (0.339 + 0.940i)16-s + (−0.356 − 0.861i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.910 + 0.412i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 640 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.910 + 0.412i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(640\)    =    \(2^{7} \cdot 5\)
Sign: $0.910 + 0.412i$
Analytic conductor: \(5.11042\)
Root analytic conductor: \(2.26062\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{640} (341, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 640,\ (\ :1/2),\ 0.910 + 0.412i)\)

Particular Values

\(L(1)\) \(\approx\) \(3.63889 - 0.785971i\)
\(L(\frac12)\) \(\approx\) \(3.63889 - 0.785971i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.34 - 0.426i)T \)
5 \( 1 + (0.956 - 0.290i)T \)
good3 \( 1 + (-1.96 + 2.39i)T + (-0.585 - 2.94i)T^{2} \)
7 \( 1 + (-4.41 - 0.877i)T + (6.46 + 2.67i)T^{2} \)
11 \( 1 + (3.98 + 0.392i)T + (10.7 + 2.14i)T^{2} \)
13 \( 1 + (1.64 - 5.42i)T + (-10.8 - 7.22i)T^{2} \)
17 \( 1 + (1.47 + 3.55i)T + (-12.0 + 12.0i)T^{2} \)
19 \( 1 + (2.49 - 1.33i)T + (10.5 - 15.7i)T^{2} \)
23 \( 1 + (2.67 - 4.00i)T + (-8.80 - 21.2i)T^{2} \)
29 \( 1 + (0.771 + 7.83i)T + (-28.4 + 5.65i)T^{2} \)
31 \( 1 + (5.27 + 5.27i)T + 31iT^{2} \)
37 \( 1 + (-0.184 + 0.344i)T + (-20.5 - 30.7i)T^{2} \)
41 \( 1 + (1.69 + 1.13i)T + (15.6 + 37.8i)T^{2} \)
43 \( 1 + (-2.05 - 2.50i)T + (-8.38 + 42.1i)T^{2} \)
47 \( 1 + (-2.54 + 1.05i)T + (33.2 - 33.2i)T^{2} \)
53 \( 1 + (0.00307 - 0.0312i)T + (-51.9 - 10.3i)T^{2} \)
59 \( 1 + (0.326 + 1.07i)T + (-49.0 + 32.7i)T^{2} \)
61 \( 1 + (-2.69 - 2.21i)T + (11.9 + 59.8i)T^{2} \)
67 \( 1 + (5.60 + 4.59i)T + (13.0 + 65.7i)T^{2} \)
71 \( 1 + (-1.81 + 9.10i)T + (-65.5 - 27.1i)T^{2} \)
73 \( 1 + (-4.08 + 0.812i)T + (67.4 - 27.9i)T^{2} \)
79 \( 1 + (-8.94 - 3.70i)T + (55.8 + 55.8i)T^{2} \)
83 \( 1 + (-4.40 - 8.23i)T + (-46.1 + 69.0i)T^{2} \)
89 \( 1 + (3.03 + 4.54i)T + (-34.0 + 82.2i)T^{2} \)
97 \( 1 + (-10.4 - 10.4i)T + 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.02824876850674605930201202753, −9.259180300037083301124180387692, −8.240880354427443788640453892361, −7.73066954987347770514563582781, −7.26649652072935705675392330678, −6.11929200341268695653558043068, −4.92446351442325104716170819356, −3.89885664544837042372742861306, −2.36384838747364544171983404531, −2.00507338185578153062343210411, 2.08670711874466778184126563266, 3.11331796149210371608321167598, 4.13193038459564518554262000234, 4.89565179217642091130415056278, 5.37893377352838493813728637641, 7.41206160689251561071063139024, 8.102600014977673766327875894809, 8.739297599542304847549654443311, 10.33134068309874818502555300568, 10.53144303835844239895723957644

Graph of the $Z$-function along the critical line