L(s) = 1 | + (0.5 − 0.866i)4-s + (−0.499 − 0.866i)16-s + 25-s + (1 − 1.73i)37-s + (1 − 1.73i)43-s − 0.999·64-s + (−1 + 1.73i)67-s + (−1 − 1.73i)79-s + (0.5 − 0.866i)100-s + (1 + 1.73i)109-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)4-s + (−0.499 − 0.866i)16-s + 25-s + (1 − 1.73i)37-s + (1 − 1.73i)43-s − 0.999·64-s + (−1 + 1.73i)67-s + (−1 − 1.73i)79-s + (0.5 − 0.866i)100-s + (1 + 1.73i)109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3969 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.400 + 0.916i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3969 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.400 + 0.916i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.444516188\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.444516188\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 - T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.696551878464449260899036447508, −7.49425000426323712467122378060, −7.13089756279581957694855461432, −6.16488249538535962624134670026, −5.65774059596497633754107298043, −4.83915600892579052270229787472, −3.96314207153873087304259446114, −2.81609312274742620477826042413, −2.02701488115012690640643308703, −0.861532186567199083432273547285,
1.38842073496557968953249765669, 2.62912072414162170463541512776, 3.16377550659673684330343252930, 4.20832186045896750308016583864, 4.86391438647474554353710761076, 6.03162458275508097594314718707, 6.59395707194047581386396098959, 7.37593136056098576442766722920, 8.013244572062605954710680295602, 8.611994860749644409645851692669