L(s) = 1 | + (0.5 + 0.866i)4-s + (−1.5 + 0.866i)13-s + (−0.499 + 0.866i)16-s + (−0.5 + 0.866i)25-s + (−1.5 + 0.866i)31-s + 37-s + (−0.5 + 0.866i)43-s + (−1.5 − 0.866i)52-s + (1.5 + 0.866i)61-s − 0.999·64-s + (0.5 + 0.866i)67-s + (0.5 − 0.866i)79-s + (−1.5 − 0.866i)97-s − 0.999·100-s + (1.5 − 0.866i)103-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)4-s + (−1.5 + 0.866i)13-s + (−0.499 + 0.866i)16-s + (−0.5 + 0.866i)25-s + (−1.5 + 0.866i)31-s + 37-s + (−0.5 + 0.866i)43-s + (−1.5 − 0.866i)52-s + (1.5 + 0.866i)61-s − 0.999·64-s + (0.5 + 0.866i)67-s + (0.5 − 0.866i)79-s + (−1.5 − 0.866i)97-s − 0.999·100-s + (1.5 − 0.866i)103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3969 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.513 - 0.858i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3969 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.513 - 0.858i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.044064701\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.044064701\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - T + T^{2} \) |
| 41 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-1.5 - 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.858561275579786176919822847537, −8.045445164091596667332800159124, −7.23213558758402373801545868619, −7.03776479185730429533245104601, −6.00592548546053580085476194099, −5.06983926954906560621920157010, −4.26529569216343145408406655274, −3.43911606352665801079611925090, −2.54082095977327984818975988398, −1.74831525948880254976969904946,
0.52969452594193309368424775607, 2.01296345732541481641191206378, 2.59421546092086221886333336536, 3.76458866592458228603940365871, 4.84434974216422494233187513194, 5.41140664579752667003013632863, 6.11285843152788242766111171673, 6.95320869621390275724149568373, 7.57149871812589374236894713967, 8.259930802173647595907153822480