L(s) = 1 | + (−0.0747 − 0.997i)4-s + (0.733 + 0.680i)7-s + (0.460 + 1.49i)13-s + (−0.988 + 0.149i)16-s + 1.94i·19-s + (0.955 + 0.294i)25-s + (0.623 − 0.781i)28-s + (−0.751 + 0.433i)31-s + (−1.62 + 0.781i)37-s + (−0.440 + 0.0663i)43-s + (0.0747 + 0.997i)49-s + (1.45 − 0.571i)52-s + (0.865 + 0.0648i)61-s + (0.222 + 0.974i)64-s + (−0.623 − 1.07i)67-s + ⋯ |
L(s) = 1 | + (−0.0747 − 0.997i)4-s + (0.733 + 0.680i)7-s + (0.460 + 1.49i)13-s + (−0.988 + 0.149i)16-s + 1.94i·19-s + (0.955 + 0.294i)25-s + (0.623 − 0.781i)28-s + (−0.751 + 0.433i)31-s + (−1.62 + 0.781i)37-s + (−0.440 + 0.0663i)43-s + (0.0747 + 0.997i)49-s + (1.45 − 0.571i)52-s + (0.865 + 0.0648i)61-s + (0.222 + 0.974i)64-s + (−0.623 − 1.07i)67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3969 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.777 - 0.629i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3969 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.777 - 0.629i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.295758497\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.295758497\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-0.733 - 0.680i)T \) |
good | 2 | \( 1 + (0.0747 + 0.997i)T^{2} \) |
| 5 | \( 1 + (-0.955 - 0.294i)T^{2} \) |
| 11 | \( 1 + (0.0747 + 0.997i)T^{2} \) |
| 13 | \( 1 + (-0.460 - 1.49i)T + (-0.826 + 0.563i)T^{2} \) |
| 17 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 19 | \( 1 - 1.94iT - T^{2} \) |
| 23 | \( 1 + (-0.988 + 0.149i)T^{2} \) |
| 29 | \( 1 + (-0.988 - 0.149i)T^{2} \) |
| 31 | \( 1 + (0.751 - 0.433i)T + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (1.62 - 0.781i)T + (0.623 - 0.781i)T^{2} \) |
| 41 | \( 1 + (-0.955 - 0.294i)T^{2} \) |
| 43 | \( 1 + (0.440 - 0.0663i)T + (0.955 - 0.294i)T^{2} \) |
| 47 | \( 1 + (-0.0747 - 0.997i)T^{2} \) |
| 53 | \( 1 + (0.623 + 0.781i)T^{2} \) |
| 59 | \( 1 + (0.733 + 0.680i)T^{2} \) |
| 61 | \( 1 + (-0.865 - 0.0648i)T + (0.988 + 0.149i)T^{2} \) |
| 67 | \( 1 + (0.623 + 1.07i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.623 + 0.781i)T^{2} \) |
| 73 | \( 1 + (0.846 - 0.193i)T + (0.900 - 0.433i)T^{2} \) |
| 79 | \( 1 + (-0.900 + 1.56i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.826 - 0.563i)T^{2} \) |
| 89 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 97 | \( 1 + (-1.68 - 0.974i)T + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.829225278938666226263946222472, −8.154617252370657089432580760968, −7.11165258754750744284109968793, −6.41549752325740012394530109490, −5.71806818584263200417606806193, −5.05066652885608245989476431848, −4.32225913836731625358367780039, −3.31778199741307104351650883878, −1.81352260121021861841004230859, −1.60588728365958744546395482766,
0.75011421858192475610822140725, 2.27063909211652052515849869993, 3.16571741695049057595577147552, 3.87411960679815572766800825782, 4.80812625433685322442232667062, 5.34280751938191737077792149953, 6.59020351308781307395878651869, 7.27652061335467948506388824531, 7.73174308381252127253296709085, 8.682922526035129004690801990832