Properties

Label 2-63e2-1.1-c1-0-51
Degree $2$
Conductor $3969$
Sign $1$
Analytic cond. $31.6926$
Root an. cond. $5.62962$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.46·2-s + 4.05·4-s + 2.59·5-s − 5.05·8-s − 6.38·10-s + 4.51·11-s − 13-s + 4.32·16-s + 0.945·17-s + 4.05·19-s + 10.5·20-s − 11.1·22-s − 0.273·23-s + 1.72·25-s + 2.46·26-s + 2.46·29-s − 2.32·31-s − 0.539·32-s − 2.32·34-s + 1.78·37-s − 9.97·38-s − 13.1·40-s + 6.40·41-s − 10.4·43-s + 18.3·44-s + 0.672·46-s + 12.1·47-s + ⋯
L(s)  = 1  − 1.73·2-s + 2.02·4-s + 1.15·5-s − 1.78·8-s − 2.01·10-s + 1.36·11-s − 0.277·13-s + 1.08·16-s + 0.229·17-s + 0.930·19-s + 2.35·20-s − 2.36·22-s − 0.0569·23-s + 0.345·25-s + 0.482·26-s + 0.456·29-s − 0.418·31-s − 0.0953·32-s − 0.399·34-s + 0.292·37-s − 1.61·38-s − 2.07·40-s + 1.00·41-s − 1.59·43-s + 2.75·44-s + 0.0991·46-s + 1.77·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3969 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3969 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3969\)    =    \(3^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(31.6926\)
Root analytic conductor: \(5.62962\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3969,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.212221864\)
\(L(\frac12)\) \(\approx\) \(1.212221864\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 + 2.46T + 2T^{2} \)
5 \( 1 - 2.59T + 5T^{2} \)
11 \( 1 - 4.51T + 11T^{2} \)
13 \( 1 + T + 13T^{2} \)
17 \( 1 - 0.945T + 17T^{2} \)
19 \( 1 - 4.05T + 19T^{2} \)
23 \( 1 + 0.273T + 23T^{2} \)
29 \( 1 - 2.46T + 29T^{2} \)
31 \( 1 + 2.32T + 31T^{2} \)
37 \( 1 - 1.78T + 37T^{2} \)
41 \( 1 - 6.40T + 41T^{2} \)
43 \( 1 + 10.4T + 43T^{2} \)
47 \( 1 - 12.1T + 47T^{2} \)
53 \( 1 + 6.27T + 53T^{2} \)
59 \( 1 - 2.72T + 59T^{2} \)
61 \( 1 - 2.27T + 61T^{2} \)
67 \( 1 + 15.8T + 67T^{2} \)
71 \( 1 - 3.27T + 71T^{2} \)
73 \( 1 - 1.50T + 73T^{2} \)
79 \( 1 - 14.7T + 79T^{2} \)
83 \( 1 - 0.945T + 83T^{2} \)
89 \( 1 - 14.3T + 89T^{2} \)
97 \( 1 - 11.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.752160834525286832663573195578, −7.78601868693527263361404939496, −7.19670423749994907545950686853, −6.39312857937413224909551460148, −5.92633241491292663868405926347, −4.84477572420187324365843646499, −3.55014080526982427557507275629, −2.45398168771716383522827811699, −1.65556924776515740713041065762, −0.879395160376564536799404295835, 0.879395160376564536799404295835, 1.65556924776515740713041065762, 2.45398168771716383522827811699, 3.55014080526982427557507275629, 4.84477572420187324365843646499, 5.92633241491292663868405926347, 6.39312857937413224909551460148, 7.19670423749994907545950686853, 7.78601868693527263361404939496, 8.752160834525286832663573195578

Graph of the $Z$-function along the critical line