Properties

Label 2-63e2-1.1-c1-0-152
Degree $2$
Conductor $3969$
Sign $-1$
Analytic cond. $31.6926$
Root an. cond. $5.62962$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.58·2-s + 4.69·4-s − 2.28·5-s + 6.97·8-s − 5.90·10-s − 2.95·11-s − 4.26·13-s + 8.64·16-s + 1.52·17-s − 7.38·19-s − 10.7·20-s − 7.64·22-s − 6.15·23-s + 0.213·25-s − 11.0·26-s − 2.34·29-s − 6.22·31-s + 8.43·32-s + 3.95·34-s + 7.17·37-s − 19.0·38-s − 15.9·40-s + 7.89·41-s + 0.834·43-s − 13.8·44-s − 15.9·46-s − 5.82·47-s + ⋯
L(s)  = 1  + 1.82·2-s + 2.34·4-s − 1.02·5-s + 2.46·8-s − 1.86·10-s − 0.891·11-s − 1.18·13-s + 2.16·16-s + 0.370·17-s − 1.69·19-s − 2.39·20-s − 1.63·22-s − 1.28·23-s + 0.0426·25-s − 2.16·26-s − 0.434·29-s − 1.11·31-s + 1.49·32-s + 0.678·34-s + 1.17·37-s − 3.09·38-s − 2.51·40-s + 1.23·41-s + 0.127·43-s − 2.09·44-s − 2.34·46-s − 0.849·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3969 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3969 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3969\)    =    \(3^{4} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(31.6926\)
Root analytic conductor: \(5.62962\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3969,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2 \( 1 - 2.58T + 2T^{2} \)
5 \( 1 + 2.28T + 5T^{2} \)
11 \( 1 + 2.95T + 11T^{2} \)
13 \( 1 + 4.26T + 13T^{2} \)
17 \( 1 - 1.52T + 17T^{2} \)
19 \( 1 + 7.38T + 19T^{2} \)
23 \( 1 + 6.15T + 23T^{2} \)
29 \( 1 + 2.34T + 29T^{2} \)
31 \( 1 + 6.22T + 31T^{2} \)
37 \( 1 - 7.17T + 37T^{2} \)
41 \( 1 - 7.89T + 41T^{2} \)
43 \( 1 - 0.834T + 43T^{2} \)
47 \( 1 + 5.82T + 47T^{2} \)
53 \( 1 - 7.43T + 53T^{2} \)
59 \( 1 - 4.62T + 59T^{2} \)
61 \( 1 - 7.13T + 61T^{2} \)
67 \( 1 + 3.32T + 67T^{2} \)
71 \( 1 - 0.160T + 71T^{2} \)
73 \( 1 - 0.380T + 73T^{2} \)
79 \( 1 + 7.95T + 79T^{2} \)
83 \( 1 + 4.29T + 83T^{2} \)
89 \( 1 - 6.05T + 89T^{2} \)
97 \( 1 - 1.32T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.63440063268465235046508628680, −7.39560501273237445945199307530, −6.36629956253338696894121001475, −5.69426468398087684771948255366, −4.94429378728008617167483059487, −4.17788748141847368361330553909, −3.78999402105560421071422302891, −2.65569175137904122411847693929, −2.10391962718519277549757946198, 0, 2.10391962718519277549757946198, 2.65569175137904122411847693929, 3.78999402105560421071422302891, 4.17788748141847368361330553909, 4.94429378728008617167483059487, 5.69426468398087684771948255366, 6.36629956253338696894121001475, 7.39560501273237445945199307530, 7.63440063268465235046508628680

Graph of the $Z$-function along the critical line