Properties

Label 2-6384-1.1-c1-0-105
Degree $2$
Conductor $6384$
Sign $-1$
Analytic cond. $50.9764$
Root an. cond. $7.13978$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s + 7-s + 9-s − 4·11-s − 6·13-s + 2·15-s + 6·17-s − 19-s + 21-s − 8·23-s − 25-s + 27-s − 6·29-s − 4·33-s + 2·35-s − 2·37-s − 6·39-s + 6·41-s + 4·43-s + 2·45-s − 4·47-s + 49-s + 6·51-s + 2·53-s − 8·55-s − 57-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s + 0.377·7-s + 1/3·9-s − 1.20·11-s − 1.66·13-s + 0.516·15-s + 1.45·17-s − 0.229·19-s + 0.218·21-s − 1.66·23-s − 1/5·25-s + 0.192·27-s − 1.11·29-s − 0.696·33-s + 0.338·35-s − 0.328·37-s − 0.960·39-s + 0.937·41-s + 0.609·43-s + 0.298·45-s − 0.583·47-s + 1/7·49-s + 0.840·51-s + 0.274·53-s − 1.07·55-s − 0.132·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6384 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6384 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6384\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 19\)
Sign: $-1$
Analytic conductor: \(50.9764\)
Root analytic conductor: \(7.13978\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6384,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 - T \)
19 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
23 \( 1 + 8 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + 4 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 - 12 T + p T^{2} \)
83 \( 1 + 16 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.81289041290558503789391755132, −7.25413178554646885558603733200, −6.07199882817985407849232206627, −5.54247416903438776389767114385, −4.90592679186157244858922128073, −4.02091490235343924056457356357, −2.95918278082195828665957653097, −2.30308408075194485728999765743, −1.64153172745758622418996190172, 0, 1.64153172745758622418996190172, 2.30308408075194485728999765743, 2.95918278082195828665957653097, 4.02091490235343924056457356357, 4.90592679186157244858922128073, 5.54247416903438776389767114385, 6.07199882817985407849232206627, 7.25413178554646885558603733200, 7.81289041290558503789391755132

Graph of the $Z$-function along the critical line