Properties

Label 2-637-91.9-c1-0-10
Degree $2$
Conductor $637$
Sign $0.962 + 0.270i$
Analytic cond. $5.08647$
Root an. cond. $2.25532$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.15 − 1.99i)2-s + 2.16·3-s + (−1.65 + 2.86i)4-s + (−1.08 + 1.87i)5-s + (−2.49 − 4.32i)6-s + 2.99·8-s + 1.69·9-s + 4.99·10-s + 4.90·11-s + (−3.57 + 6.19i)12-s + (−1.41 + 3.31i)13-s + (−2.34 + 4.06i)15-s + (−0.151 − 0.262i)16-s + (−3.57 + 6.19i)17-s + (−1.95 − 3.38i)18-s + 2.16·19-s + ⋯
L(s)  = 1  + (−0.814 − 1.41i)2-s + 1.25·3-s + (−0.825 + 1.43i)4-s + (−0.484 + 0.839i)5-s + (−1.01 − 1.76i)6-s + 1.06·8-s + 0.565·9-s + 1.57·10-s + 1.47·11-s + (−1.03 + 1.78i)12-s + (−0.391 + 0.920i)13-s + (−0.606 + 1.05i)15-s + (−0.0378 − 0.0655i)16-s + (−0.868 + 1.50i)17-s + (−0.460 − 0.797i)18-s + 0.497·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.962 + 0.270i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.962 + 0.270i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(637\)    =    \(7^{2} \cdot 13\)
Sign: $0.962 + 0.270i$
Analytic conductor: \(5.08647\)
Root analytic conductor: \(2.25532\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{637} (373, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 637,\ (\ :1/2),\ 0.962 + 0.270i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.23016 - 0.169393i\)
\(L(\frac12)\) \(\approx\) \(1.23016 - 0.169393i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
13 \( 1 + (1.41 - 3.31i)T \)
good2 \( 1 + (1.15 + 1.99i)T + (-1 + 1.73i)T^{2} \)
3 \( 1 - 2.16T + 3T^{2} \)
5 \( 1 + (1.08 - 1.87i)T + (-2.5 - 4.33i)T^{2} \)
11 \( 1 - 4.90T + 11T^{2} \)
17 \( 1 + (3.57 - 6.19i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 - 2.16T + 19T^{2} \)
23 \( 1 + (-0.302 - 0.524i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (-1.15 + 1.99i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 + (-3.57 - 6.19i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (4.30 + 7.45i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (-4.99 + 8.64i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (-6.25 - 10.8i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (-0.755 + 1.30i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (1.19 + 2.07i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (-1.41 + 2.44i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 - 4.33T + 61T^{2} \)
67 \( 1 - T + 67T^{2} \)
71 \( 1 + (2 + 3.46i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (-2.16 - 3.75i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (-3.30 + 5.72i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 - 2.82T + 83T^{2} \)
89 \( 1 + (3.25 + 5.63i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-6.83 - 11.8i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.59190349841236412760291615962, −9.504489721769711592022983087192, −9.041380741601454772677976772261, −8.368711326580630422651221935420, −7.35034466346751938506286416582, −6.39440366575978540379557153401, −4.08165048108663453776057676734, −3.62769472018907185756349743647, −2.56039916947045974179445163339, −1.62399163389801151015124751480, 0.821986637802263334066506000391, 2.83040553746038624344056564117, 4.23556784621099796319445078801, 5.25141928611256098321214222566, 6.51092678155410581226712808546, 7.37310647354239543093029240992, 8.072327170604862877894989994300, 8.784557651582454611264047471987, 9.242901782339395467894175895991, 9.916296679028041806498628115490

Graph of the $Z$-function along the critical line