L(s) = 1 | − 0.851·2-s + (0.330 + 0.572i)3-s − 1.27·4-s + (1.72 + 2.98i)5-s + (−0.281 − 0.487i)6-s + 2.78·8-s + (1.28 − 2.21i)9-s + (−1.46 − 2.53i)10-s + (0.448 + 0.777i)11-s + (−0.421 − 0.730i)12-s + (3.07 + 1.88i)13-s + (−1.13 + 1.97i)15-s + 0.178·16-s − 1.93·17-s + (−1.09 + 1.88i)18-s + (0.519 − 0.898i)19-s + ⋯ |
L(s) = 1 | − 0.601·2-s + (0.190 + 0.330i)3-s − 0.637·4-s + (0.769 + 1.33i)5-s + (−0.114 − 0.198i)6-s + 0.985·8-s + (0.427 − 0.739i)9-s + (−0.463 − 0.802i)10-s + (0.135 + 0.234i)11-s + (−0.121 − 0.210i)12-s + (0.852 + 0.522i)13-s + (−0.293 + 0.508i)15-s + 0.0445·16-s − 0.469·17-s + (−0.257 + 0.445i)18-s + (0.119 − 0.206i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.166 - 0.986i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.166 - 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.904634 + 0.764791i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.904634 + 0.764791i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (-3.07 - 1.88i)T \) |
good | 2 | \( 1 + 0.851T + 2T^{2} \) |
| 3 | \( 1 + (-0.330 - 0.572i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-1.72 - 2.98i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.448 - 0.777i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + 1.93T + 17T^{2} \) |
| 19 | \( 1 + (-0.519 + 0.898i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 5.65T + 23T^{2} \) |
| 29 | \( 1 + (-0.917 + 1.58i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (4.56 - 7.91i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 10.6T + 37T^{2} \) |
| 41 | \( 1 + (2.66 - 4.61i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.95 - 3.39i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.59 - 6.22i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.69 + 8.12i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 - 0.510T + 59T^{2} \) |
| 61 | \( 1 + (-0.718 + 1.24i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.22 - 7.31i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.72 - 2.98i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-5.45 + 9.44i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-6.04 - 10.4i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 1.51T + 83T^{2} \) |
| 89 | \( 1 + 13.6T + 89T^{2} \) |
| 97 | \( 1 + (-0.253 - 0.438i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.60390111271304028177369479272, −9.799584181759390403597692670364, −9.197173798791232629151121547467, −8.474659867669004016035566575084, −6.99382723737369143806228873288, −6.68864809758227853995763730153, −5.30402111036723151016176378391, −4.07358974714031921791306053081, −3.10619359074108145553187176376, −1.51937051905495275059087021785,
0.909927814578637257170161400004, 1.93368373237992002653196236689, 3.88484061209091821009391862634, 5.01518241463518524145707078929, 5.59334580589867659421277680375, 7.07117368700537698717166491518, 8.085155620005702383443219403943, 8.788814432702224692554373137207, 9.204998993445784675646312369508, 10.26737161043478935141636779891