L(s) = 1 | − 0.268·2-s + (−0.571 − 0.989i)3-s − 1.92·4-s + (−1.28 − 2.21i)5-s + (0.153 + 0.265i)6-s + 1.05·8-s + (0.846 − 1.46i)9-s + (0.343 + 0.594i)10-s + (−1.97 − 3.41i)11-s + (1.10 + 1.90i)12-s + (3.15 − 1.74i)13-s + (−1.46 + 2.53i)15-s + 3.57·16-s − 0.785·17-s + (−0.227 + 0.393i)18-s + (−3.74 + 6.49i)19-s + ⋯ |
L(s) = 1 | − 0.189·2-s + (−0.329 − 0.571i)3-s − 0.964·4-s + (−0.572 − 0.992i)5-s + (0.0625 + 0.108i)6-s + 0.372·8-s + (0.282 − 0.488i)9-s + (0.108 + 0.188i)10-s + (−0.594 − 1.03i)11-s + (0.318 + 0.550i)12-s + (0.874 − 0.484i)13-s + (−0.378 + 0.654i)15-s + 0.893·16-s − 0.190·17-s + (−0.0535 + 0.0926i)18-s + (−0.859 + 1.48i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.775 - 0.630i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.775 - 0.630i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0978010 + 0.275314i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0978010 + 0.275314i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (-3.15 + 1.74i)T \) |
good | 2 | \( 1 + 0.268T + 2T^{2} \) |
| 3 | \( 1 + (0.571 + 0.989i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (1.28 + 2.21i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (1.97 + 3.41i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + 0.785T + 17T^{2} \) |
| 19 | \( 1 + (3.74 - 6.49i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 7.95T + 23T^{2} \) |
| 29 | \( 1 + (1.17 - 2.03i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.27 - 2.21i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 6.75T + 37T^{2} \) |
| 41 | \( 1 + (1.21 - 2.11i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.12 - 1.94i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.658 - 1.14i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (4.63 - 8.03i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 - 8.96T + 59T^{2} \) |
| 61 | \( 1 + (-4.72 + 8.18i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.676 - 1.17i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (6.15 + 10.6i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-0.384 + 0.665i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (3.09 + 5.36i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 1.07T + 83T^{2} \) |
| 89 | \( 1 + 7.66T + 89T^{2} \) |
| 97 | \( 1 + (1.18 + 2.05i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.00272051415152281057853512270, −8.981496495401771434482129655052, −8.164639478978027026586624355034, −7.906533019879858450314915470685, −6.20634531571228856546025689675, −5.61032337731391614556864928603, −4.32190628961618544281521080064, −3.61122334371031476969491097437, −1.34070592054714039825533346688, −0.19818429921661631477491650500,
2.28492842216554993704442385648, 3.96147616445803868709991449182, 4.39388880766029582957315598823, 5.51791292988569004383339090827, 6.78831902089783715995442368013, 7.65788722580451563031362068630, 8.499626959239745037282361888595, 9.598381172149713698328170512157, 10.22056400633139114828714574692, 10.95433698856714718376441868143