L(s) = 1 | − 1.90·2-s + (0.214 + 0.371i)3-s + 1.63·4-s + (−0.736 − 1.27i)5-s + (−0.408 − 0.707i)6-s + 0.702·8-s + (1.40 − 2.43i)9-s + (1.40 + 2.43i)10-s + (2.19 + 3.80i)11-s + (0.349 + 0.605i)12-s + (−2.69 + 2.39i)13-s + (0.315 − 0.546i)15-s − 4.60·16-s + 1.20·17-s + (−2.68 + 4.64i)18-s + (1.62 − 2.80i)19-s + ⋯ |
L(s) = 1 | − 1.34·2-s + (0.123 + 0.214i)3-s + 0.815·4-s + (−0.329 − 0.570i)5-s + (−0.166 − 0.288i)6-s + 0.248·8-s + (0.469 − 0.813i)9-s + (0.443 + 0.768i)10-s + (0.662 + 1.14i)11-s + (0.100 + 0.174i)12-s + (−0.748 + 0.663i)13-s + (0.0814 − 0.141i)15-s − 1.15·16-s + 0.291·17-s + (−0.632 + 1.09i)18-s + (0.371 − 0.644i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 + 0.446i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.894 + 0.446i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.705747 - 0.166416i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.705747 - 0.166416i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (2.69 - 2.39i)T \) |
good | 2 | \( 1 + 1.90T + 2T^{2} \) |
| 3 | \( 1 + (-0.214 - 0.371i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (0.736 + 1.27i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-2.19 - 3.80i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 - 1.20T + 17T^{2} \) |
| 19 | \( 1 + (-1.62 + 2.80i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 4.43T + 23T^{2} \) |
| 29 | \( 1 + (0.0837 - 0.145i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.62 + 4.54i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 7.05T + 37T^{2} \) |
| 41 | \( 1 + (-2.58 + 4.47i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (0.0113 + 0.0197i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.84 - 10.1i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.0708 + 0.122i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 - 5.34T + 59T^{2} \) |
| 61 | \( 1 + (-5.77 + 9.99i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.06 + 3.58i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-4.98 - 8.63i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-7.62 + 13.1i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (0.387 + 0.670i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 16.0T + 83T^{2} \) |
| 89 | \( 1 + 6.55T + 89T^{2} \) |
| 97 | \( 1 + (-1.74 - 3.02i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.01825089649615216348260010088, −9.543687523807550204171028763281, −9.074059497492519170512900797581, −7.995822395142424096115357289495, −7.26454040672391785057778040010, −6.43297120665741401742128476786, −4.68533012903465507393063992099, −4.11072420633955706857468804404, −2.18762863127060956220944978898, −0.811997872974530704723468565031,
1.06037455747608530093793971085, 2.52479101997313739219425835019, 3.86071348566735309624975574246, 5.28438768790229430177068411622, 6.55954873074569235649931196735, 7.51138206892934270889990625400, 7.993593341207264705586625776028, 8.807797872724497893207643247131, 9.890260707294501151215251783050, 10.39224013085585195437956401213